Name \qquad There are 210 points available on this test.

1. (10 points) The line tangent to the graph of a function f at the point $(2,9)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
2. (10 points) Find an equation for the line tangent to the graph of $f(x)=x^{2}-3 x$ at the point $(2,-2)$?
3. (10 points) Find an equation for the line tangent to the graph of $f(x)=$ $\ln (2 x+1)$ at the point $(0,0) ?$
4. (10 points) Find an equation for the line tangent to the graph of $y=e^{(2 x-1)}$ at the point on the graph where $x=2$?
5. (10 points) Find the rate of change of $f(t)=e^{3 t} \cdot \ln (t)$ when $t=1$.
6. (10 points) Let $h(x)=\frac{\sqrt{(x-4)(x-2)(2 x+7)}}{x^{2}-100}$. Write the domain of h in interval notation.
7. (20 points) Let $h(x)=\ln \left(x^{2}+4 x+5\right)$.
(a) What is the domain of h. Recall that $\ln (x)$ is defined only if $x>0$.
(b) Build the sign chart for $h^{\prime}(x)$.
(c) Discuss the local max and min of h.
8. (15 points) A radioactive substance has a half-life of 22 years. Find an expression for the amount of the substance at time t if 20 grams were present initially.
9. (10 points) If $h=g \circ f$ and $f(1)=3, g^{\prime}(3)=7, f^{\prime}(1)=-2$ find $h^{\prime}(1)$.
10. (15 points) Let $f(x)=x^{4}+2 x^{3}-12 x^{2}+x-5$.
(a) Find the interval(s) where f is concave upward.
(b) Find the inflection points of f, if there are any.
11. (15 points) Find the area of the region R bounded above by the graph of $f(x)=x^{2}-3 x+11$, below by the x-axis, and on the sides by the vertical lines $x=0$ and $x=2$.
12. (15 points) Find the area of the region R caught between the graph of $f(x)=$ $x^{2}-3 x+2$ and $g(x)=-x+5$.
13. (40 points)
(a) Evaluate $\int x^{3}-x^{-2}+x^{-1} d x$
(b) Evaluate $\int_{1}^{3} \frac{x^{3}-2 x^{2}+x}{x} d x$
(c) Evaluate $\int_{0}^{7} \frac{d(x-5)^{9}}{d x} d x$
(d) Evaluate $\int_{0}^{4} \frac{3 x^{2}}{x^{3}+5} d x$
14. (20 points)
(a) Find the sign chart for the function $g(x)=\frac{(2 x-3)(3 x+1)}{(x-4)(x+2)}$.
(b) Find all the asymptotes of g.
(c) Use the information in (a) and (b) to sketch the graph of g. Note: the graph must be consistent with (a) and (b) to get credit here.

