December 11, 2007

Name

The total number of points available is 238. Throughout this test, show your work.

1. (15 points) Consider the function $f(x)=x e^{2 x}$.
(a) Find a value of x at which the line tangent to the graph of f is horizontal.

Solution: Since $f^{\prime}(x)=e^{2 x}+2 x e^{2 x}$, we can factor and solve $e^{2 x}(1+2 x)=$ 0 to get $x=-1 / 2$.
(b) Find a value of x at which the line tangent to the graph of f has slope $2 e$.
Solution: Setting $e^{2 x}(1+2 x)=2 e$, we see that $x=1 / 2$ works.
(c) Find an equation of the tangent line referred to in part (b).

Solution: Note that $f(1 / 2)=e / 2$, so the line must be $y-e / 2=2 e(x-$ $1 / 2$). Thus $y \approx 5.437 x-1.359$
2. (30 points) Suppose $u(x)$ is a function whose derivative is

$$
u^{\prime}(x)=\left(x^{2}-9\right)(x-1)^{2}(x-7)(3 x+11) .
$$

What this says is that u has already been differentiated and the function given is $u^{\prime}(x)$ Recall that an important theorem tells you the intervals over which $u(x)$ is increasing based on $u^{\prime}(x)$.
(a) Find the critical points of $u(x)$.

Solution: $x=-3, x=3, x=1, x=7$ and $x=-11 / 3$.
(b) Use the Test Interval Technique to find the intervals over which $u(x)$ is increasing.
Solution: u is increasing over $(-\infty,-11 / 3),(-3,3)$ and over $(7, \infty)$.
3. (12 points) Given $f^{\prime \prime}(x)=2 x-6$ and $f^{\prime}(-2)=6$ and $f(-2)=0$. Find $f^{\prime}(x)$ and $f(x)$.
Solution: First write $f^{\prime}(x)=x^{2}-6 x+C$ by the power rule. Solve $f^{\prime}(-2)=6$ for C to get $C=-10$. Then $f(x)=x^{2}-6 x-10$. Therefore $f(x)=\int x^{2}-$ $6 x-10 d x=x^{3} / 3-3 x^{2}-10 x+C$. We can solve $f(-2)=0$ to get $C-16 / 3$, so the function is $f(x)=x^{3} / 3-3 x^{2}-10 x-16 / 3$.
4. (15 points) Compound Interest.
(a) Consider the equation $1000(1+0.02)^{4 t}=5000$. Find the value of t and interpret your answer in the language of compound interest.
Solution: t is the time required for an 8% investment compounded quarterly to quintuple. To find t, solve $4 t \ln 1.02=\ln 5$, getting $t \approx 20.318$ years.
(b) Consider the equation $P(1+0.03)^{4 \cdot 10}=5000$. Solve for P and interpret your answer in the language of compound interest.
Solution: P is the present value of $\$ 5000$ invested at 12% compounded quarterly for 10 years. Solve the equation to get $P=1532.78$.
(c) Consider the equation $1000 e^{10 r}=5000$. Solve for r and interpret your answer in the language of compound interest.
Solution: What rate of interest does it take to quintuple an investment compounded continuously for 10 years. The value is $r=16.09 \%$.
5. (12 points) Let $f(x)=\frac{6}{x}-2 e^{x}$.
(a) Find an antiderivative of $f(x)$.

Solution: Note that $\int \frac{6}{x}-2 e^{x} d x=6 \ln x-2 e^{x}$.
(b) Compute $\int_{1}^{e} f(x) d x$.

Solution: Note that $\int \frac{6}{x}-2 e^{x} d x=6 \ln x-2 e^{x}$. So $\int_{1}^{e} f(x) d x=$ $6 \ln x-\left.2 e^{x}\right|_{1} ^{e}=6 \ln e-2 e^{e}-(6 \ln 1-2 e)=6-2 e^{e}+2 e \approx-18.872$.
6. (42 points) Find the following antiderivatives.
(a) $\int 4 x-5 d x$

Solution: $2 x^{2}-5 x+C$.
(b) $\int 9 x^{2}-4 x-1 / x d x$

Solution: $3 \cdot x^{3}-2 \cdot x^{2}-\ln x+C$.
(c) $\int \frac{x^{3}+2 x^{2}-x}{x} d x$

Solution: $\int\left(x^{3}+2 x^{2}-x\right) / x d x=\int x^{2}+2 x-1 d x=x^{3} / 3+x^{2}-x+C$.
(d) $\int \frac{2 x+3}{x^{2}+3 x-3} d x$

Solution: By substitution, $\left(u=x^{2}+3 x-3\right), \left.\int \frac{2 x+3}{x^{2}+3 x-3} d x=\ln \right\rvert\, x^{2}+$ $3 x-3 \mid+C$.
(e) $\int 6 x^{5}\left(x^{6}+3\right)^{7} d x$

Solution: By substitution with $u=x^{6}+3, \int 6 x^{4}\left(x^{6}+3\right)^{7} d x=\frac{\left(x^{6}+3\right)^{8}}{8}+$ C.
(f) $\int x^{2} e^{x^{3}} d x$

Solution: By substitution with $u=x^{3}, d u=3 x^{2}, \int e^{u} d u=e^{u}+C=$ $(1 / 3) e^{x^{3}}+C$.
7. (40 points) This question is about building more complicated functions from simpler ones. Let $f(x)=x^{2}, g(x)=\sqrt{x}, h(x)=x+1, k(x)=1 / x$ and $l(x)=x-2$. For each function given below, show how it is possible to combine some of the simpler functions above to obtain the given one. For example, if $U(x)=\sqrt{x^{2}-2}$ was given, you could write $U(x)=g \circ l \circ f(x)$, and if $V(x)=((x+1) / x)^{2}$, you could write $V(x)=f \circ(h \cdot k)(x)$.
(a) $H(x)=\left(\frac{1}{x-2}\right)^{2}+1$

Solution: $H(x)=h \circ f \circ k \circ l(x)$.
(b) $G(x)=\left(\frac{1}{x-2}+1\right)^{2}$

Solution: $G(x)=f \circ h \circ k \circ l(x)$.
(c) $L(x)=\frac{x}{x-2}-2$

Solution: $L(x)=l(f \cdot k(k \circ l))(x)$.
(d) $K(x)=\frac{1}{(x+1)^{2}-2}$

Solution: $K(x)=k \circ l \circ f \circ h(x)$.
(e) $N(x)=\left(\sqrt{x^{2}+x+1}-2\right)^{2}$

Solution: $N(x)=f \circ l \circ g \circ(f+h(x))$. There are probably other solutions as well.
8. (15 points) Find the intervals over which $f(x)=x^{2} e^{2 x}$ is increasing.

Solution: First $f^{\prime}(x)=2 x e^{2 x}+x^{2} \cdot 2 e^{2 x}=2 e^{2 x}\left(x+x^{2}\right)$, so we need to solve $x+x^{2}=0$ and we get $x=0$ and $x=-1$. Since f^{\prime} is negative precisely on $(-1,0), f$ is increasing on $(-\infty,-1)$ and on $(0, \infty)$.
9. (12 points) Is there a value of b for which $\int_{b}^{2 b} x^{4}+x^{2} d x=128 / 15$? If so, find it.

Solution: Use the power rule to get the equation $(2 b)^{5} / 5+(2 b)^{3}-\left(b^{5} / 5+b\right)=$ 128/15. It follows that $b=1$.
10. (25 points) According to Newton's Law of Cooling, the rate at which an object's temperature changes is proportional to the temperature of the medium into which it is emersed. If $F(t)$ denotes the temperature of a cup of instant coffee (initially $212^{\circ} \mathrm{F}$), then it can be proven that

$$
F(t)=T+A e^{-k t},
$$

where T is the air temperature, $70^{\circ} F, A$ and k are constants, and t is expressed in minutes.
(a) What is the value of A ?

Solution: Note that $F(0)=70+A \cdot 1=212$ so $A=142$.
(b) Suppose that after exactly 20 minutes, the temperature of the coffee is $186.6^{\circ} \mathrm{F}$. What is the value of k ?
Solution: Solve $F(t)=186.6=70+142 e^{-k(20)}$ for k to get $k \approx 0.009853$.
(c) Use the information in (a) and (b) to find the number of minutes before the coffee reaches the temperature of $80^{\circ} \mathrm{F}$.
Solution: Solve the equation $80=70+142 e^{-0.009853 t}$ for t to get first $e^{-0.009853 t}=10 / 142 \approx 0.0704$, and taking logs of both sides yields $t=$ 269.28 minutes.
(d) Find the rate at which the object is cooling after $t=20$ minutes.

Solution: To find $F^{\prime}(t)$ recall the way we differentiate exponential functions. $F^{\prime}(t)=142(-k) e^{-k t}$, so $F^{\prime}(20)=140(-k) e^{-20 k} \approx-1.1488$ degrees per minute.
11. (20 points) Amber Airlines runs chartered flights to Costa Rica. They expect 300 passengers and they charge each passenger $\$ 200$. However if more than 300 persons sign up for the flight, they agree to charge $\$ 0.25$ less per ticket for each extra person. For example, if 302 passengers sign up, the airline charges each of the 302 passengers $\$ 199.50$.
(a) Find the revenue function $R(x)$ in terms of the number of new passengers x. In other words, let $x+300$ represent the number of passengers, where $x>0$.
Solution: Let x represent the number of passengers beyond 300 that Amber Airlines enlists. Then $R(x)=(300+x)(200-0.25 x)$.
(b) How many passengers result in the maximum revenue?

Solution: To maximize $R(x)$, find the critical points and the endpoints of the domain. The domain is $[0, \infty)$, and, by the product rule, the derivative is $R^{\prime}(x)=1(200-.25)-0.25(300+x)=200-.25 x-75-.25 x=$ $125-0.5 x$. So $x=250$ is the only critical point. Note that $R^{\prime \prime}(x)=-0.5$, so $R^{\prime \prime}(250)=-1.5<0$, and this means that $x=250$ is the location of a relative maximum. Since $R(0)=200 \cdot 300=60000$ is the only endpoint, and since R is decreasing to the right of $x=250$ (why?, $R^{\prime}(x)$ is negative for $x>250$), it follows that R has an absolute maximum at $x=250$.
(c) What is that maximum revenue?

Solution: The maximum revenue is $R(250)=550 \cdot 137.50=75625$.

