May 7, 2004

Name

The first six problems count 7 points each (total $42 \overline{\text { points) and rest count as marked. }}$ There are 207 points available. Good luck.

1. Consider the function f defined by:

$$
f(x)= \begin{cases}x^{2}-3 & \text { if } x<0 \\ 5 x-3 & \text { if } x \geq 0\end{cases}
$$

Find the slope of the line which goes through the points $(-2, f(-2))$ and (3, f(3)).
(A) $7 / 5$
(B) $11 / 5$
(C) $17 / 5$
(D) 5
(E) 7

Solution: B. The two points on the graph are $(-2,1)$ and $(3,12)$ and the slope of the line joining them is $m=11 / 5$.
2. The distance between the point $(6.5,8.5)$ and the midpoint of the segment joining the points $(1,5)$ and $(2,7)$ is
(A) $\sqrt{22}$
(B) $\sqrt{23}$
(C) $5 \sqrt{5} / 2$
(D) $\sqrt{26}$
(E) 6

Solution: C. The midpoint of the segment is $(1.5,6)$, so the distance is $d=$ $\sqrt{5^{2}+2.5^{2}}=5 \sqrt{5} / 2$.
3. Let $f(x)=2 x+3$ and $g(x)=3 x-6$. Which of the following does not belong to the domain of $f \circ g$?
(A) 1
(B) 2
(C) 3
(D) 4
(E) The domain of $f \circ g$ is the set of all real numbers.

Solution: E. This composition is defined for every real number.
4. The line tangent to the graph of a function f at the point $(2,5)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: B. The slope of the line through $(2,5)$ and $(0,7)$ is -1 .
5. What is the slope of the tangent line to the graph of $f(x)=x^{-1}$ at the point $(3,1 / 3)$?
(A) -1
(B) $-1 / 2$
(C) $-1 / 3$
(D) $-1 / 9$
(E) $1 / 3$

Solution: D. The derivative is $f^{\prime}(x)=-x^{-2}$ whose value of at $x=3$ is $f^{\prime}(2)=-1 / 9$.
6. The line tangent to the graph of the function $f(x)$ at the point $(2,5)$ is $2 y-3 x=$ 4. What is $f^{\prime}(2)$?
(A) 0
(B) $2 / 3$
(C) $3 / 2$
(D) $-2 / 3$
(E) $-3 / 2$

Solution: C. The line has slope $3 / 2$.
7. (15 points) Let $f(x)=\sqrt{2 x-1}$.
(a) Construct $\frac{f(5+h)-f(5)}{h}$

Solution: $\frac{f(5+h)-f(5)}{h}=\frac{\sqrt{2(5+h)-1}-\sqrt{2(5)-1}}{h}$.
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(5)$.
Solution: $\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}=\lim _{h \rightarrow 0}-\frac{\sqrt{2(5+h)-1}-\sqrt{2(5)-1}}{h}$. Rationalize the numerator to get $\lim _{h \rightarrow 0}-\frac{\sqrt{2(5+h)-1}-3}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{9+2 h}-3}{h}=1 / 3$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(5,3)$.
Solution: $y-3=(1 / 3)(x-5)$.
8. (20 points) Find the interval(s) where $f(x)=(x-4)\left(x^{2}-1\right)(x+3)$ is positive.

Solution: The branch points are $x=4,1,-1$, and -3 . I picked test points $-4,-2,0$, and 5 , and found that $f(-4)>0, f(-2)<0, f(0)>0, f(2)<0$, and $f(5)>0$. Therefore, the function f is positive on $(-\infty,-3),(-1,1)$, and $(4, \infty)$.
9. (15 points) Let $f(x)=4 x^{3}+6 x^{2}-24 x+1$.
(a) Find the interval(s) where f is decreasing.

Solution: $f^{\prime}(x)=12 x^{2}+12 x-24$, which has two zeros, $x=-2, x=1$. So, by the test interval technique f^{\prime} is positive over the intervals $(-\infty,-2)$ and $(1, \infty)$. Thus, f is decreasing over the interval $(-2,1)$.
(b) Find all inflection points of f.

Solution: There is one inflection point, $(-1 / 2, f(-1 / 2))=(-1 / 2,14)$
10. (20 points) A ball is thrown upwards from the top of a building that is 200 feet tall. The position of the ball at time t is given by $s(t)=-16 t^{2}+36 t+200$, where $s(t)$ is measured in feet and t is measured in seconds.
(a) What is the position of the ball at time $t=0$?

Solution: $s(0)=200$ feet.
(b) What is the velocity of the ball at time $t=0$?

Solution: $s^{\prime}(t)=-32 t+36$ and $s^{\prime}(0)=36$.
(c) What is the acceleration of the ball at time $t=0$?

Solution: $a(t)=s^{\prime \prime}(t)=-32$, so $a(0)=-32$.
(d) What is the velocity of the ball at time $t=1$?

Solution: $s^{\prime}(1)=-32 \cdot 1+36=4$.
(e) How many seconds elapse before the ball hits the ground?

Solution: Solve $-16 t^{2}+36 t+200=0$ to get $t \approx 4.835$.
(f) What is the speed of the ball when it hits the ground?

Solution: $s^{\prime}(4.83) \approx-118.726$.
(g) What is the acceleration of the ball at the time it hits the ground?

Solution: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$.
11. (15 points) Find an equation for the line tangent to the graph of $f(x)=$ $x \ln (x)-x$ at the point $(1, f(1))$.
Solution: $f^{\prime}(x)=\ln (x)+x \cdot \frac{1}{x}-1$ so $f^{\prime}(1)=0+1 \cdot 1-1=0$, and since $f(1)=-1$, it follows that the tangent line has the equation $y=-1$.
12. (20 points) Find the absolute maximum value of the function

$$
f(x)=x^{3}-6 x^{2}+9 x-5
$$

over the interval $[0,4]$.
Solution: $f^{\prime}(x)=3 x^{2}-12 x+9$, which is zero when $3(x-3)(x-1)=0$, so the critical points are $x=1$ and $x=3$. Comparing the values of f at these and the endpoints, we get $f(0)=-5 ; f(1)=-1 ; f(3)=-5$; and $f(4)=-1$. Thus the absolute max is -1 and it occurs twice, at 1 and at 4 .
13. (60 points) Find the following antiderivatives and definite integrals.
(a) $\int 6 x^{3}-5 x-1 d x$

Solution: $\int 6 x^{3}-5 x-1 d x=3 x^{4} / 2-5 x^{2} / 2-x+C$.
(b) $\int 4 x^{\frac{5}{2}}+x^{-\frac{1}{2}} d x$

Solution: $\int 4 x^{\frac{5}{2}}+x^{-\frac{1}{2}} d x=8 x^{7 / 2} / 7+2 x^{1 / 2}+C$.
(c) $\int \frac{3 x^{4}+2 x^{2}-1}{x^{2}} d x$

Solution: $\int \frac{3 x^{4}+2 x^{2}-1}{x^{2}} d x=\int 3 x^{2}+2-x^{-2} d x=x^{3}+2 x+1 / x+C$
(d) $\int \frac{2 x+1}{x^{2}+x-3} d x$

Solution: Note that the numerator is the derivative of the denominator. Thus the antiderivative is $\ln \left|x^{2}+x-3\right|+C$.
(e) $\int 5 x^{4}\left(x^{5}+2\right)^{3} d x$

Solution: By substitution, $\int 5 x^{4}\left(x^{5}+2\right)^{3} d x=\frac{u^{4}}{4}+C=\left(x^{5}+2\right)^{4} / 4+C$, where $u=x^{5}+2$.
(f) $\int_{0}^{1} 2 x^{2}-3 x d x$

Solution: $\int_{0}^{1} 2 x^{2}-3 x d x=2 x^{3} / 3-3 x^{2} /\left.2\right|_{0} ^{1}=2 / 3-3 / 2=-5 / 6$.
(g) $\int_{0}^{2} x e^{x^{2}} d x$

Solution: $\int_{0}^{2} x e^{x^{2}} d x=e^{x^{2}} /\left.2\right|_{0} ^{2}=e^{4} / 2-e^{0} / 2=\left(e^{4}-1\right) / 2$.
(h) Find the derivative of $g(x)=x \ln x$. Evaluate $\int_{1}^{e} \ln x d x$.

Solution: Note that $g^{\prime}(x)=\ln x+1$, which is close to the function we want to antidifferentiate. Thus $\int_{1}^{e} \ln x d x=\int_{1}^{e} \ln x+1-1 d x=$ $\int_{1}^{e} \ln x+1-\int_{1}^{e} 1 d x=x \ln x-\left.x\right|_{1} ^{e}=(e-e)-(0-1)=0+1=1$.

