May 7, 2003. Your name \qquad
As usual, show all your work. If you used a calculator, explain in detail how you used it to solve the problem. There are 237 points available on this test.

1. (42 points) Find the following antiderivatives.
(a) $\int 2 x-3 d x$

Solution: $x^{2}-3 x+c$.
(b) $\int 6 x^{2}-4 x-1 d x$

Solution: $2 \cdot x^{3}-2 \cdot x^{2}-x+c$.
(c) $\int \frac{x^{3}+2 x-1}{x} d x$

Solution: $\int x^{2}+2-1 / x d x=x^{3} / 3+2 x-\ln |x|+c$.
(d) $\int \frac{4 x+1}{2 x^{2}+x-3} d x$

Solution: By substitution, $\left(u=2 x^{2}+x-3\right), \left.\int \frac{4 x+1}{2 x^{2}+x-3} d x=\ln \right\rvert\, 2 x^{2}+$ $x-3 \mid+c$.
(e) $\int 5 x^{4}\left(x^{5}+3\right)^{7} d x$

Solution: By substitution with $u=x^{5}+3, \int 5 x^{4}\left(x^{5}+3\right)^{7} d x=\frac{\left(x^{5}+3\right)^{8}}{8}+C$.
(f) $\int 3 x^{2} e^{x^{3}} d x$

Solution: By substitution with $u=x^{3}, d u=3 x^{2}, \int e^{u} d u=e^{u}+C=$ $e^{x^{3}}+C$.
2. (30 points) Note that $g(x)=(x-1)(x-3)$ has two zeros in the interval $[0,4]$.
(a) Find the area of the 'triangular' region bounded by (i) the x-axis, (ii) the y-axis, and (iii) the graph of $g(x)$.

Solution:

(b) Compute $\int_{0}^{4} g(x) d x$.

Solution:

(c) Find the area of the region caught between the graph of $g(x)$ and the x axis over the interval from $x=0$ to $x=4$. Explain why this is different from the number found in part b.

Solution:

3. (20 points) Find a function $G(x)$ whose derivative is $3 x^{2}-7 x+3$ and for which $G(2)=-3$.
Solution: $G(x)=x^{3}-7 x^{2} / 2+3 x+C$ for some constant C. But since $G(2)=-3=2^{3}-28 / 2+6+C$, it follows that $C=8-14+6=0$ and $G(x)=x^{3}-7 x^{2} / 2+3 x$.
4. (40 points) Let $f(x)=\sqrt{x^{2}+1}, g(x)=\frac{x+1}{x-1}$, and $h(x)=2 x-3$. Find each of the functions.
(a) $\frac{d}{d x}(f \circ g(x))$

Solution: By the chain rule,
(b) $h^{\prime}\left(g^{\prime}(x)\right)$

Solution:

(c) $\frac{d}{d x}(h \circ h(x))$

Solution:

(d) $\frac{d}{d x}\left(h(x) \cdot(g(x))^{2}\right)$

Solution:

(e) $\frac{d}{d x}(h(x) \div g(x))$

Solution:

5. (20 points) Let $g(x)$ be defined as follows: Let

$$
g(x)= \begin{cases}e^{2 x} & \text { if } x \leq 1 \\ \ln (x-1) & \text { if } x>1\end{cases}
$$

(a) Compute the derivative of $g(x)$.

Solution:

(b) What is the slope of the line tangent to the graph of $g(x)$ at the point $(0,1)$.

Solution:

(c) What is the slope of the line tangent to the graph of $g(x)$ at the point $(3, \ln (2))$.

Solution:

(d) Find an equation for the line tangent to the graph of $g(x)$ at the point $(3, \ln (2))$.
Solution: First note that $g^{\prime}(3)=1 / 2$ and that $g(3)=\ln (2)$ so the line is $y-\ln (2)=\frac{1}{2}(x-3)$, which simplifies to $y=(x-3) / 2+\ln (2)=$ $x / 2-3 / 2+\ln (2)$.
6. (40 points) Suppose $u(x)$ is a function whose derivative is

$$
u^{\prime}(x)=\left(x^{2}-4\right)(x-1)^{2}(x+3)(x+5) .
$$

Recall that a major theorem tells you the intervals over which $u(x)$ is increasing based on $u^{\prime}(x)$.
(a) Find the critical points of $u(x)$.

Solution: $x=-2, x=2, x=1, x=-3$ and $x=-5$.
(b) Use the Test Interval Technique to find the intervals over which $u(x)$ is increasing.
Solution: u is increasing over $(-\infty,-5),(-3,-2)$ and over $(2, \infty)$.
7. (25 points) Consider the function $h(x)=\sqrt{2 x^{3}-3 x^{2}-36 x+500}$ defined over the interval $[-5,5]$.
(a) Find $h^{\prime}(x)$.

Solution: Differentiate to get $h^{\prime}(x)=6(x-3)(x+2)\left(2 x^{3}-3 x^{2}-36 x+\right.$ $500)^{-1 / 2}$
(b) Find the critical points of $h(x)$.

Solution: The only critical points are $x=3$ and $x=-2$.
(c) Find the absolute maximum and absolute minimum of the $h(x)$ over its domain.
Solution: Checking endpoints, we have $h(-5)=\sqrt{355}$ and $h(5)=\sqrt{495}$. Also, $h(3)=\sqrt{419}$ and $h(-2)=\sqrt{544}$. So the minimum value is $\sqrt{355}$ which occurs at $x=-5$ and the maximum value is $\sqrt{544}$ which occurs at $x=-2$.
8. (20 points) Compute the following definite integrals.
(a) $\int_{0}^{2} 2 x e^{-x^{2}} d x$

Solution: $\left.-e^{-x^{2}}\right]_{0}^{2}=1-e^{-4} \approx 0.9816$.
(b) $\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x$

Solution: $\left.2 / 3\left(x^{2}-x+5\right)^{3 / 2}\right]_{0}^{5}=\frac{10}{3}(25-\sqrt{5}) \approx 75.8798$.

