May 7, 2003 Your name \qquad
As usual, show all your work. If you used a calculator, explain in detail how you used it to solve the problem. There are 237 points available on this test.

1. (42 points) Find the following antiderivatives.
(a) $\int 2 x-3 d x$
(b) $\int 6 x^{2}-4 x-1 d x$
(c) $\int \frac{x^{3}+2 x-1}{x} d x$
(d) $\int \frac{4 x+1}{2 x^{2}+x-3} d x$
(e) $\int 5 x^{4}\left(x^{5}+3\right)^{7} d x$
(f) $\int 3 x^{2} e^{x^{3}} d x$
2. (30 points) Note that $g(x)=(x-1)(x-3)$ has two zeros in the interval $[0,4]$.
(a) Find the area of the 'triangular' region bounded by (i) the x-axis, (ii) the line $x=4$, and (iii) the graph of $g(x)$.
(b) Compute $\int_{0}^{4} g(x) d x$.
(c) Find the area of the region caught between the graph of $g(x)$ and the x axis over the interval from $x=0$ to $x=4$. Explain why this is different from the number found in part b.
3. (20 points) Find a function $G(x)$ whose derivative is $3 x^{2}-7 x+3$ and for which $G(2)=-3$.
4. (40 points) Let $f(x)=\sqrt{x^{2}+1}, g(x)=\frac{x+1}{x-1}$, and $h(x)=2 x-3$. Find each of the functions.
(a) $\frac{d}{d x}(f \circ g(x))$
(b) $h^{\prime}\left(g^{\prime}(x)\right)$
(c) $\frac{d}{d x}(h \circ h(x))$
(d) $\frac{d}{d x}\left(h(x) \cdot(g(x))^{2}\right)$
(e) $\frac{d}{d x}(h(x) \div g(x))$
5. (20 points) Let $g(x)$ be defined as follows: Let

$$
g(x)= \begin{cases}e^{2 x} & \text { if } x \leq 1 \\ \ln (x-1) & \text { if } x>1\end{cases}
$$

(a) Compute the derivative of $g(x)$.
(b) What is the slope of the line tangent to the graph of $g(x)$ at the point $(0,1)$.
(c) What is the slope of the line tangent to the graph of $g(x)$ at the point $(3, \ln (2))$.
(d) Find an equation for the line tangent to the graph of $g(x)$ at the point $(3, \ln (2))$.
6. (40 points) Suppose $u(x)$ is a function whose derivative is

$$
u^{\prime}(x)=\left(x^{2}-4\right)(x-1)^{2}(x+3)(x+5) .
$$

Recall that a major theorem tells you the intervals over which $u(x)$ is increasing based on $u^{\prime}(x)$.
(a) Find the critical points of $u(x)$.
(b) Use the Test Interval Technique to find the intervals over which $u(x)$ is increasing.
7. (25 points) Consider the function $h(x)=\sqrt{2 x^{3}-3 x^{2}-36 x+500}$ defined over the interval $[-5,5]$.
(a) Find $h^{\prime}(x)$.
(b) Find the critical points of $h(x)$.
(c) Find the absolute maximum and absolute minimum of the $h(x)$ over its domain.
8. (20 points) Compute the following definite integrals.
(a) $\int_{0}^{2} 2 x e^{-x^{2}} d x$
(b) $\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x$

