May 9, $2006 \quad$ Name
The total number of points available is 250 . Throughout this test, show your work.

1. (15 points) Consider the function $f(x)=x e^{x}$.
(a) Find a value of x at which the line tangent to the graph of f is horizontal.
(b) Find a value of x at which the line tangent to the graph of f has slope $2 e$.
2. (10 points) Consider the function $f(x)=24 x^{3}-30 x^{2}+14 x-2$. Find an antiderivative $F(x)$ of $f(x)$ that satisfies $F(1)=2$.
3. (40 points) Suppose $u(x)$ is a function whose derivative is

$$
u^{\prime}(x)=\left(x^{2}-4\right)(x-1)^{2}(x+3)(3 x+17) .
$$

What this says is that u has already been differentiated and the function given is $u^{\prime}(x)$. Recall that an important theorem tells you the intervals over which $u(x)$ is increasing based on $u^{\prime}(x)$.
(a) Find the critical points of $u(x)$.
(b) Use the Test Interval Technique to find the intervals over which $u(x)$ is increasing.
4. (10 points) Consider the function $f(x)=x^{-1}-2 x^{-3}$. Let $F(x)$ be the antiderivative of $f(x)$ such that $F(1)=0$. What is $F(x)$?
5. (10 points) Given $f^{\prime \prime}(x)=2 x-6$ and $f^{\prime}(-2)=6$ and $f(-2)=0$. Find $f^{\prime}(x)$ and $f(x)$.
6. (10 points) Let $f(x)=\frac{7}{x}-8 e^{x}$. Find an antiderivative of $f(x)$.
7. (15 points) Is there a value of b for which $\int_{b}^{2 b} x^{4} d x=31 / 5$? If so, find it.
8. (15 points) What is the value of $\int_{0}^{\sqrt{15}} 2 x \sqrt{x^{2}+3} d x$?
9. (15 points) Compound Interest.
(a) Consider the equation $1000(1+0.02)^{4 t}=5000$. Find the value of t and interpret your answer in the language of compound interest.
(b) Consider the equation $P(1+0.03)^{4 \cdot 10}=5000$. Solve for P and interpret your answer in the language of compound interest.
(c) Consider the equation $P e^{10 r}=5 P$. Solve for r and interpret your answer in the language of compound interest.
10. (20 points) Note that $g(x)=(x-1)(x-3)$ has two zeros in the interval [0, 4].
(a) Find the area of the region bounded by (i) the interval [3, 4] on the x-axis, (ii) the line $x=4$, and (iii) the graph of $g(x)$.
(b) Compute $\int_{0}^{4} g(x) d x$.
(c) Find the area of the region caught between the graph of $g(x)$ and the x axis over the interval from $x=0$ to $x=4$. Explain why this is different from the number found in part (b).
11. (30 points) A manufacture has been selling 1300 television sets a week at $\$ 450$ each. A market survey indicates that for each $\$ 27$ rebate offered to a buyer, the number of sets sold will increase by 270 per week. In other words, if they drop the price by $\$ 27$, they sell 270 more sets, etc.
(a) Find the demand function $p(x)$, where x is the number of the television sets sold per week, and $p(x)$ is measured in dollars.
(b) How large rebate should the company offer to a buyer, in order to maximize its revenue?
(c) If the weekly cost function is $97500+150 x$, how should it set the size of the rebate to maximize its profit?
12. (20 points) A rancher wants to fence in an area of 1000000 square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
13. (20 points) Certain radioactive material decays in such a way that the mass remaining after t years is given by the function

$$
m(t)=165 e^{-0.01 t}
$$

where $m(t)$ is measured in grams.
(a) Find the mass at time $t=0$.
(b) How much of the mass remains after 15 years?
(c) What is the half-life of the material?
14. (20 points) Find the concavity of $f(x)=x^{2} e^{2 x}$ over its domain.

