May 4, 2001
Name
The first five problems count 7 points each (total 35 points) and rest count as marked. There are 195 points available. Good luck.

1. Consider the function f defined by:

$$
f(x)= \begin{cases}2 x^{2}-3 & \text { if } x<0 \\ 5 x-3 & \text { if } x \geq 0\end{cases}
$$

Find the slope of the line which goes through the points $(-2, f(-2))$ and (3, f(3)).
(A) $7 / 5$
(B) 2
(C) $17 / 5$
(D) 5
(E) 7

Solution: The two points on the graph are $(-2,5)$ and $(3,12)$ and the slope of the line joining them is $m=7 / 5$.
2. The distance between the point $(6.5,8.5)$ and the midpoint of the segment joining the points $(2,3)$ and $(5,6)$ is
(A) $\sqrt{22}$
(B) $\sqrt{23}$
(C) 5
(D) $\sqrt{26}$
(E) 6

Solution: The midpoint of the segment is $3.5,4.5$), so the distance is $d=$ $\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$.
3. Let $f(x)=2 x+3$ and $g(x)=3 x-9$. Which of the following does not belong to the domain of f / g ?
(A) 1
(B) 3
(C) 6
(D) 9
(E) The domain of f / g is the set of all real numbers.

Solution: Only a number for which g is zero fails to be in the domain. Solving $3 x-9=0$ yields $x=3$.
4. The line tangent to the graph of a function f at the point $(2,5)$ on the graph also goes through the point $(0,7)$. What is $f^{\prime}(2)$?
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2

Solution: The slope of the line through $(2,5)$ and $(0,7)$ is -1 .
5. What is the slope of the tangent line to the graph of $f(x)=x^{-2}$ at the point ($2,1 / 4$)?
(A) $-1 / 4$
(B) $-1 / 8$
(C) $-1 / 16$
(D) $-1 / 256$
(E) $-1 / 512$

Solution: The derivative is $f^{\prime}(x)=-2 x^{-3}$ whose value of at $x=2$ is $f^{\prime}(2)=$ $-1 / 4$.
6. (15 points) Let $f(x)=1 /(3 x)$.
(a) Construct $\frac{f(2+h)-f(2)}{h}$

Solution: $\frac{f(2+h)-f(2)}{h}=\frac{\frac{1}{3(2+h)}-\frac{1}{6}}{h}=-\frac{1}{(2+h) \cdot 6}$.
(b) Simplify and take the limit of the expression in (a) as h approaches 0 to find $f^{\prime}(2)$.
Solution: $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0}-\frac{1}{(2+h) \cdot 6}=-1 / 12$.
(c) Use the information found in (b) to find an equation for the line tangent to the graph of f at the point $(2,1 / 6)$.
Solution: $y-1 / 6=-(1 / 12)(x-2)$.
7. (10 points) Find the rate of change of $f(t)=e^{2 t} \cdot \ln (t)$ when $t=1$.

Solution: Use the product rule to get $f^{\prime}(t)=2 e^{2 t} \cdot \ln (t)+(1 / t) \cdot e^{2 t}$ whose value at $t=1$ is $f^{\prime}(1)=2 e^{2} \cdot \ln (1)+(1 / 1) \cdot e^{2}=e^{2}$.
8. (20 points) Suppose the functions f and g are differentiable and their values at certain points are given in the table. The next four problems refer to these functions f and g. Notice that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. Note also that, for example, if $K(x)=f(x)-g(x)$, then $K^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$ and $K^{\prime}(4)=f^{\prime}(4)-g^{\prime}(4)=$ $5-10=-5$. Answer each of the questions below about functions that can be build using f and g.

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	2	3
2	5	4
3	1	2
4	3	5
5	6	4
6	0	5
7	4	1

x	$g(x)$	$g^{\prime}(x)$
0	5	5
1	7	3
2	4	6
3	2	6
4	6	10
5	3	3
6	1	2
7	0	1

(a) The function h is defined by $h(x)=f(g(x))$. Use the chain rule to find $h^{\prime}(3)$.
Solution: By the chain rule, $h^{\prime}(3)=f^{\prime}\left(g(3) \cdot g^{\prime}(3)=f^{\prime}(2) \cdot g^{\prime}(3)=4 \cdot 6=\right.$ 24.
(b) The function k is defined by $k(x)=f(x) \cdot g(x)$. Use the product rule to find $k^{\prime}(1)$.
Solution: $k^{\prime}(1)=f^{\prime}(1) \cdot g(1)+f(1) \cdot g^{\prime}(1)=3 \cdot 7+2 \cdot 3=27$.
(c) The function H is defined by $H(x)=f(f(x))$. Use the chain rule to find $H^{\prime}(2)$.
Solution: $H^{\prime}(2)=f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(5) \cdot f^{\prime}(2)=4 \cdot 4=16$.
(d) Let $Q(x)=f(f(x)-g(x))$. Find $Q^{\prime}(5)$.

Solution: $Q^{\prime}(5)=f^{\prime}(f(5)-g(5)) \cdot\left(f^{\prime}(5)-g^{\prime}(5)\right)=f^{\prime}(6-3) \cdot(4-3)=2$.
9. (10 points) A radioactive substance has a half-life of 27 years. Find an expression for the amount of the substance at time t if 20 grams were present initially.
Solution: $Q(t)=A e^{-k t}$. Since the half-life is 27 years, it follows that $.5=$ $e^{-27 k}$, which can be solved to give $k \approx 0.0025672$. Thus $Q(t)=20 e^{-0.0025672 t}$.
10. (10 points) If $h=g \circ f$ and $f(1)=2, g^{\prime}(2)=5, f^{\prime}(1)=-3$ find $h^{\prime}(1)$.

Solution: $h^{\prime}(1)=g^{\prime}(f(1)) \cdot f^{\prime}(1)=g^{\prime}(2) \cdot f^{\prime}(1)=-15$.
11. (15 points) Let $f(x)=x^{4}+2 x^{3}-6 x^{2}+x-5$.
(a) Find the interval(s) where f is concave upward.

Solution: $f^{\prime}(x)=4 x^{3}+6 x^{2}-12 x+1$ and $f^{\prime \prime}(x)=12 x^{2}+12 x-12$, which has two zeros, $x=(-1 \pm \sqrt{5}) / 2$. So $f^{\prime \prime}$ is positive over the intervals $(-\infty,(-1-\sqrt{5}) / 2$ and $(-1+\sqrt{5}) / 2, \infty)$.
(b) Find the inflection points of f, if there are any.

Solution: There are two inflection points, $(-1+\sqrt{5}) / 2,-6.0556)$ and $(-1-\sqrt{5}) / 2, f(-1-\sqrt{5}) / 2)=(-1-\sqrt{5}) / 2,-23.944)$
12. (20 points) A ball is thrown upwards from the top of a building that is 200 feet tall. The position of the ball at time t is given by $s(t)=-16 t^{2}+36 t+200$, where $s(t)$ is measured in feet and t is measured in seconds.
(a) What is the velocity of the ball at time $t=0$?

Solution: $s^{\prime}(t)=-32 t+36$ and $s^{\prime}(0)=36$.
(b) What is the velocity of the ball at time $t=1$?

Solution: $s^{\prime}(1)=-32 \cdot 1+36=4$.
(c) How many seconds elapse before the ball hits the ground?

Solution: Solve $-16 t^{2}+36 t+200=0$ to get $t \approx 4.83$.
(d) What is the speed of the ball when it hits the ground?

Solution: $s^{\prime}(4.83) \approx-118.72$.
(e) What is the acceleration of the ball at the time it hits the ground?

Solution: $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=-32 f t / \sec ^{2}$.
13. (20 points)
(a) Let $f(x)=2 x^{2}$ and compute the Riemann sum of f over the interval $[1,9]$ using four subintervals of equal length $(n=4)$ and choosing the representative point in each subinterval to be the midpoint of the subinterval.
Solution: The endpoints of the intervals are $2,4,6,8$ and the sum in question is $f(2) \cdot(3-1)+f(4) \cdot(5-3)+f(6) \cdot(7-5)+f(8) \cdot(9-7)=$ $2(8+32+72+128)=480$.
(b) Compute

$$
\int_{1}^{9} 2 x^{2} d x
$$

and compare this value with the one in part a.
Solution: $\int_{1}^{9} 2 x^{2} d x=\left.\frac{2 x^{3}}{3}\right|_{1} ^{9}=\frac{2}{3} 9^{3}-\frac{2}{3} 1^{3}=485 \frac{1}{3}$.
14. (10 points) Find an equation for the line tangent to the graph of $f(x)=$ $x \ln (x)-x$ at the point $(1, f(1))$.
Solution: $f^{\prime}(x)=\ln (x)+x \cdot f r a c 1 x-1$ so $f^{\prime}(1)=0+1 \cdot 1-1=0$, and since $f(1)=-1$, it follows that the tangent line has the equation $y=-1$.
15. (10 points) Evaluate $\int 3 x^{2} \sqrt{x^{3}+1} d x$

Solution: Let $u=x^{3}+1$. Then $d u=3 x^{2} d x$ and $\int 3 x^{2} \sqrt{x^{3}+1} d x=\frac{2}{3}\left(x^{3}+\right.$ $1)^{3 / 2}+C$.
16. (10 points) Evaluate $\int_{1}^{3} x^{3} \cdot\left(x^{4}-2\right)^{2} d x$

Solution: Let $u=x^{4}-2$. Then $d u=4 x^{3} d x$ and $\int_{1}^{3} x^{3} \cdot\left(x^{4}-2\right)^{2} d x=$ $\left.\frac{1}{4}\left(x^{4}-2\right)^{3}\right|_{1} ^{3}=\frac{79^{3}}{12}-\frac{-1}{12}=41086.5$.
17. (10 points) Evaluate $\int_{0}^{4} 2 x e^{x^{2}} d x$

Solution: $\int_{0}^{4} 2 x e^{x^{2}} d x=\left.e^{x^{2}}\right|_{0} ^{4}=e^{16}=e^{0} \approx 8886110.5-1=8886109.5$.

