$\qquad$
The multiple choice problems count five points each.

1. Let $f(x)=2 x^{3}-3 x+8$. What is $f^{\prime}(1)$ ?
(A) 0
(B) 3
(C) 8
(D) 12
(E) 21
2. Let $h(x)=e^{x^{2}}$. What is $h^{\prime \prime}(0)$ ?
(A) 0
(B) 1
(C) 2
(D) 4
(E) 6
3. Let $g(x)=\ln \left(1+\frac{1}{x}\right)$. What is the slope of the line tangent to the graph of $g$ at the point $(2, \ln 1.5)$ ?
(A) $-1 / 3$
(B) $-1 / 6$
(C) $-1 / 12$
(D) $1 / 12$
(E) $2 / 3$
4. The distance from the point $(3,4)$ to the point $(-1, x)$ is 5 . Which of the following could be $x$ ?
(A) 2
(B) 4
(C) 5
(D) 7
(E) 8
5. What is $\lim _{h \rightarrow 0} \frac{\sqrt{1+2 h}-1}{h}$ ?
(A) -1
(B) 0
(C) $1 / 2$
(D) 1
(E) 2
6. The slope of the line that contains the points $(-1, y)$ and $(4,-12)$ is -2 ? What is $y$ ?
(A) -3
(B) -2
(C) 3
(D) 5
(E) 6.2
7. At which of the following points is the second derivative of

$$
x^{4}-6 x^{3}+12 x^{2}+2 x+2
$$

negative?
(A) $-1 / 2$
(B) $1 / 2$
(C) $3 / 2$
(D) $5 / 2$
(E) $7 / 2$
8. What is the slope of the line perpendicular to the line $2 y+x=6$ ?
(A) -3
(B) -2
(C) $-1 / 2$
(D) 2
(E) 3
9. The function $f$ has second derivative given by $f^{\prime \prime}(x)=2 x-1$, and also satisfies $f(0)=19 / 6$ and $f^{\prime}(0)=1$. What is $f(1)$ ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
10. Suppose $f^{\prime}(x)=2 x^{2}$ and $g(x)=3 x-1$. What is $\frac{d}{d x}(f \circ g(x))$ ?
(A) $2(3 x-1)^{2}$
(B) $3\left(9 x^{2}-6 x+1\right)$
(C) $6\left(9 x^{2}-6 x+1\right)$
(D) $2 x^{2}(3 x-1)$
(E) $4 x(3 x-1)$
11. Let

$$
f(x)= \begin{cases}2+\sqrt{1-x} & \text { if } x \leq 1 \\ 1 /(1-x) & \text { if } x>1\end{cases}
$$

and let $g(x)=2 x-1$. Compute $g(f(2)-f(g(1))$.
(A) -7
(B) -5
(C) -1
(D) 1
(E) 5
12. What is $\lim _{h \rightarrow 0} \frac{\frac{2}{3+h}-\frac{2}{3}}{h}$ ?
(A) $-2 / 3$
(B) $-2 / 9$
(C) $2 / 9$
(D) $2 / 3$
(E) $3 / 2$
13. What is the number of vertical asymptotes of the function $h$ defined by

$$
h(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-4\right)}{(x-3)(x-2)(x-1)(x)(x+1)(x+2)^{2}} ?
$$

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
14. It takes exactly 12 years for $\$ P$ invested at an annual rate $r$ compounded continuously to triple. What is $r$ (to the nearest 0.001 )?
(A) 0.075
(B) 0.080
(C) 0.086
(D) 0.092
(E) 0.102
15. What is $(2 x-3) \cdot(x-1)-(2 x-3) \cdot x-1$ ?
(A) 0
(B) $2-2 x$
(C) $2 x-4$
(D) $2 x-3$
(E) $2 x-2$
16. The number $x$ satisfies $2^{x}=5$. What is $7^{x}$ ?
(A) 90.19
(B) 90.83
(C) 91.09
(D) 91.55
(E) 91.68
17. Suppose $f$ is a continuous function such that $f(0)=-1, f(1)=2, f(2)=-3$, $f(3)=4, f(4)=-2$, and $f(5)=-3$. What is the fewest number of zeros $f$ could have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
18. Suppose the function

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 2 \\ k x-6 & \text { if } x>2\end{cases}
$$

is continuous at $x=2$. Then $k=$
(A) 1
(B) 2
(C) 5
(D) 6
(E) 7
19. It takes 10 years for a $\$ 1000$ invested at an annual rate of $r$ compounded quarterly to double. What is $r$ ?
(A) 0.070
(B) 0.072
(C) 0.074
(D) 0.076
(E) 0.078
20. What is $\int_{0}^{3} x^{2}+2 x+1 d x$ ?
(A) 13
(B) 17
(C) 21
(D) 25
(E) 27
21. (20 points) Compute each of the following derivatives.
(a) $\frac{d}{d x} \sqrt{x^{3}+1}$
(b) $\frac{d}{d x} \ln \left(2 x^{3}+1\right)$
(c) Let $f(x)=e^{x^{2}} \cdot e^{-2 x+1}$. Find $f^{\prime}(x)$.
(d) $\frac{d}{d x} \frac{e^{2 x}}{x}$
22. (20 points) Compute the following antiderivatives.
(a) $\int \frac{3 x^{2}}{2 \sqrt{x^{3}+1}} d x$
(b) $\int \frac{x^{3}-2 x-1}{x} d x$
(c) $\int \frac{3 x^{2}+1}{x^{3}+x-3} d x$

Hint: Let $u=x^{3}+x-3$.
23. (16 points) Compute the following integrals.
(a) $\int_{0}^{2} 2 x e^{-x^{2}} d x$
(b) $\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x$
24. (10 points) Find a function $G(x)$ whose derivative is $1 /(x-5)$ and whose value at $x=6$ is 9 .
25. (10 points) Find the area of the region bounded by $y=x^{3 / 2}$, the $x$-axis, and the lines $x=0$ and $x=4$.
26. (20 points) A 16 in . by 12 in . sheet of paper is used to build a topless box as follows: an $x$-in. by $x$-in. square is cut from each corner, and the resulting rectangular pieces are folded upward along the dotted lines to form the sides of the box.

(a) What is the volume $V$ of the resulting box?
(b) Find $\frac{d}{d x} V(x)$.
(c) What is the domain of $V$ ?
(d) Find all stationary points of $V$.
(e) What value of $x$ maximizes the volume?
(f) What is the maximal volume?
27. (20 points) According to Newton's Law of Cooling, the temperature $F(t)$ of a body in a surrounding medium changes at a rate that is proportional to the difference between the temperature of the body and the temperature of the surroundings. It follows that $F(t)=T+A e^{-k t}$, where $t$ is expressed in minutes, $T$ is the temperature in Celcius of the surrounding medium, and $A$ and $k$ are constants. A hard-boiled egg at $98^{\circ} \mathrm{C}$ is put in a pan under running $10^{\circ} \mathrm{C}$ water to cool. After 5 minutes, the egg's temperature is found to be $38^{\circ} \mathrm{C}$. How much longer will it take the egg to reach $20^{\circ} \mathrm{C}$ ? Use the following steps to solve the problem. Show your work in detail.
(a) What is $T$ ?
(b) Use the fact that $f(0)=98^{\circ}$ and the value of $T$ to find $A$.
(c) Use the values of $T$ and $A$ and the temperature of the egg after five minutes to find the value of $k$.
(d) Use the values of $A, T$, and $k$ to find the time required for the egg to become $20^{\circ} \mathrm{C}$.

## Solutions and answers.

1. Let $f(x)=2 x^{3}-3 x+8$. What is $f^{\prime}(1)$ ?
(A) 0
(B) 3
(C) 8
(D) 12
(E) 21
2. Let $h(x)=e^{x^{2}}$. What is $h^{\prime \prime}(0)$ ?
(A) 0
(B) 1
(C) 2
(D) 4
(E) 6
3. Let $g(x)=\ln \left(1+\frac{1}{x}\right)$. What is the slope of the line tangent to the graph of $g$ at the point $(2, \ln 1.5)$ ?
(A) $-1 / 3$
(B) $-1 / 6$
(C) $-1 / 12$
(D) $1 / 12$
(E) $2 / 3$
4. The distance from the point $(3,4)$ to the point $(-1, x)$ is 5 . Which of the following could be $x$ ?
(A) 2
(B) 4
(C) 5
(D) 7
(E) 8
5. What is $\lim _{h \rightarrow 0} \frac{\sqrt{1+2 h}-1}{h}$ ?
(A) -1
(B) 0
(C) $1 / 2$
(D) 1
(E) 2
6. The slope of the line that contains the points $(-1, y)$ and $(4,-12)$ is -2 ? What is $y$ ?
(A) -3
(B) -2
(C) 3
(D) 5
(E) 6.2
7. At which of the following points is the second derivative of

$$
x^{4}-6 x^{3}+12 x^{2}+2 x+2
$$

negative?
(A) $-1 / 2$
(B) $1 / 2$
(C) $3 / 2$
(D) $5 / 2$
(E) $7 / 2$
8. What is the slope of the line perpendicular to the line $2 y+x=6$ ?
(A) -3
(B) -2
(C) $-1 / 2$
(D) 2
(E) 3
9. The function $f$ has second derivative given by $f^{\prime \prime}(x)=2 x-1$, and also satisfies $f(0)=19 / 6$ and $f^{\prime}(0)=1$. What is $f(1)$ ?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
10. Suppose $f^{\prime}(x)=2 x^{2}$ and $g(x)=3 x-1$. What is $\frac{d}{d x}(f \circ g(x))$ ?
(A) $2(3 x-1)^{2}$
(B) $3\left(9 x^{2}-6 x+1\right)$
(C) $6\left(9 x^{2}-6 x+1\right)$
(D) $2 x^{2}(3 x-1)$
(E) $4 x(3 x-1)$
11. Let

$$
f(x)= \begin{cases}2+\sqrt{1-x} & \text { if } x \leq 1 \\ 1 /(1-x) & \text { if } x>1\end{cases}
$$

and let $g(x)=2 x-1$. Compute $g(f(2)-f(g(1))$.
(A) -7
(B) -5
(C) -1
(D) 1
(E) 5
12. What is $\lim _{h \rightarrow 0} \frac{\frac{2}{3+h}-\frac{2}{3}}{h}$ ?
(A) $-2 / 3$
(B) $-2 / 9$
(C) $2 / 9$
(D) $2 / 3$
(E) $3 / 2$
13. What is the number of vertical asymptotes of the function $h$ defined by

$$
h(x)=\frac{\left(x^{2}-1\right)\left(x^{2}-4\right)}{(x-3)(x-2)(x-1)(x)(x+1)(x+2)^{2}} ?
$$

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
14. It takes exactly 12 years for $\$ P$ invested at an annual rate $r$ compounded continuously to triple. What is $r$ (to the nearest 0.001 )?
(A) 0.075
(B) 0.080
(C) 0.086
(D) 0.092
(E) 0.102
15. What is $(2 x-3) \cdot(x-1)-(2 x-3) \cdot x-1$ ?
(A) 0
(B) $2-2 x$
(C) $2 x-4$
(D) $2 x-3$
(E) $2 x-2$
16. The number $x$ satisfies $2^{x}=5$. What is $7^{x}$ ?
(A) 90.19
(B) 90.83
(C) 91.09
(D) 91.55
(E) 91.68
17. Suppose $f$ is a continuous function such that $f(0)=-1, f(1)=2, f(2)=-3$, $f(3)=4, f(4)=-2$, and $f(5)=-3$. What is the fewest number of zeros $f$ could have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
18. Suppose the function

$$
f(x)= \begin{cases}x+2 & \text { if } x \leq 2 \\ k x-6 & \text { if } x>2\end{cases}
$$

is continuous at $x=2$. Then $k=$
(A) 1
(B) 2
(C) 5
(D) 6
(E) 7
19. It takes 10 years for a $\$ 1000$ invested at an annual rate of $r$ compounded quarterly to double. What is $r$ ?
(A) 0.070
(B) 0.072
(C) 0.074
(D) 0.076
(E) 0.078
20. What is $\int_{0}^{3} x^{2}+2 x+1 d x$ ?
(A) 13
(B) 17
(C) 21
(D) 25
(E) 27
21. (20 points) Compute each of the following derivatives.
(a) $\frac{d}{d x} \sqrt{x^{3}+1} \frac{3 x^{2}}{2 \sqrt{x^{3}+1}}$
(b) $\frac{d}{d x} \ln \left(2 x^{3}+1\right) \frac{6 x^{2}}{2\left(x^{3}+1\right)}$
(c) Let $f(x)=e^{x^{2}} \cdot e^{-2 x+1}$. Find $f^{\prime}(x) .2(x-1) e^{(x-1)^{2}}$
(d) $\frac{d}{d x} \frac{e^{2 x}}{x} \frac{(2 x-1) e^{2 x}}{x^{2}}$
22. (20 points) Compute the following antiderivatives.
(a) $\int \frac{3 x^{2}}{2 \sqrt{x^{3}+1}} d x$
(b) $\int \frac{x^{3}-2 x-1}{x} d x$
(c) $\int \frac{3 x^{2}+1}{x^{3}+x-3} d x$

Hint: Let $u=x^{3}+x-3$.
23. (16 points) Compute the following integrals.
(a) $\int_{0}^{2} 2 x e^{-x^{2}} d x$
(b) $\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x$
24. (10 points) Find a function $G(x)$ whose derivative is $1 /(x-5)$ and whose value at $x=6$ is 9 .
25. (10 points) Find the area of the region bounded by $y=x^{3 / 2}$, the $x$-axis, and the lines $x=0$ and $x=4$.
26. (20 points) A 16 in . by 12 in . sheet of paper is used to build a topless box as follows: an $x$-in. by $x$-in. square is cut from each corner, and the resulting rectangular pieces are folded upward along the dotted lines to form the sides of the box.

(a) What is the volume $V$ of the resulting box?
(b) Find $\frac{d}{d x} V(x)$.
(c) What is the domain of $V$ ?
(d) Find all stationary points of $V$.
(e) What value of $x$ maximizes the volume?
(f) What is the maximal volume?
27. (20 points) According to Newton's Law of Cooling, the temperature $F(t)$ of a body in a surrounding medium changes at a rate that is proportional to the difference between the temperature of the body and the temperature of the surroundings. It follows that $F(t)=T+A e^{-k t}$, where $t$ is expressed in minutes, $T$ is the temperature in Celcius of the surrounding medium, and $A$ and $k$ are constants. A hard-boiled egg at $98^{\circ} \mathrm{C}$ is put in a pan under running $10^{\circ} \mathrm{C}$ water to cool. After 5 minutes, the egg's temperature is found to be $38^{\circ} \mathrm{C}$. How much longer will it take the egg to reach $20^{\circ} \mathrm{C}$ ? Use the following steps to solve the problem. Show your work in detail.
(a) What is $T$ ?
(b) Use the fact that $f(0)=98^{\circ}$ and the value of $T$ to find $A$.
(c) Use the values of $T$ and $A$ and the temperature of the egg after five minutes to find the value of $k$.
(d) Use the values of $A, T$, and $k$ to find the time required for the egg to become $20^{\circ} \mathrm{C}$.

