$\qquad$

1. Suppose the functions $f$ and $g$ are differentiable and their values at certain points are given in the table. The next four problems refer to these functions $f$ and $g$. Notice that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. Note also that, for example, if $K(x)=f(x)-g(x)$, then $K^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$ and $K^{\prime}(4)=f^{\prime}(4)-g^{\prime}(4)=5-10=-5$. Answer each of the questions below about functions that can be build using $f$ and $g$.

| $x$ | $f(x)$ | $f^{\prime}(x)$ |
| :---: | :---: | :---: |
| 0 | 2 | 1 |
| 1 | 2 | 3 |
| 2 | 5 | 4 |
| 3 | 1 | 2 |
| 4 | 3 | 5 |
| 5 | 6 | 4 |
| 6 | 0 | 5 |
| 7 | 4 | 1 |


| $x$ | $g(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: |
| 0 | 5 | 5 |
| 1 | 7 | 3 |
| 2 | 4 | 6 |
| 3 | 2 | 6 |
| 4 | 6 | 10 |
| 5 | 3 | 3 |
| 6 | 1 | 2 |
| 7 | 0 | 1 |

(a) The function $h$ is defined by $h(x)=f(g(x))$. Use the chain rule to find $h^{\prime}(3)$. $h^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $h^{\prime}(3)=f^{\prime}(g(3)) \cdot g^{\prime}(3)=f^{\prime}(2) \cdot 6=24$.
(b) The function $k$ is defined by $k(x)=f(x) \cdot g(x)$. Use the product rule to find $\left.k^{\prime}(1) . k^{\prime}(x)=f^{\prime}(x)\right) \cdot g(x)+g^{\prime}(x) \cdot f(x)$, so $k^{\prime}(1)=3 \cdot 7+3 \cdot 2=27$.
(c) The function $H$ is defined by $H(x)=f(f(x))$. Use the chain rule to find $H^{\prime}(2) . H^{\prime}(x)=f^{\prime}(f(x)) \cdot g^{\prime}(x)$, so $h^{\prime}(2)=f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(5) \cdot 4=16$.
(d) Let $Q(x)=f(f(x)-g(x))$. Find $Q^{\prime}(5)$. $Q^{\prime}(x)=f^{\prime}(f(x)-g(x)) \cdot\left(f^{\prime}(x)-g^{\prime}(x)\right)$, so $Q^{\prime}(5)=f^{\prime}(6-3) \cdot(4-3)=f^{\prime}(3)=2$.
(e) Find the derivative of the function $f / g$ at the point $x=4$.

Apply the quotient rule to get $\frac{f^{\prime}(4) g(4)-g^{\prime}(4) f(4)}{(g(4))^{2}}=\frac{30-30}{36}=0$.
2. Suppose that the derivative of the function $f$ is given by

$$
f^{\prime}(x)=x^{2}-6 x+5
$$

Note: you are given the derivative function! Answer the following questions about $f$.
(a) Find an interval over which $f$ is increasing.
$f^{\prime}(x)=(x-1)(x-5)$ so $f$ is montonic on $(-\infty, 1),(1,5)$, and $(5, \infty)$.
Observe that $f^{\prime}$ is positive over the first and last of these.
(b) Find the location of a relative maximum of $f$.
$f^{\prime \prime}(1)=-6<0$ implies that $f$ has a relative max at 1 .
(c) Find the location of a relative minimum of $f$.

$$
f^{\prime \prime}(5)=4>0 \text { implies that } f \text { has a relative min at } 5 \text {. }
$$

(d) Find an interval over which $f$ is concave upwards.
$f^{\prime \prime}(x)>0$ for all $x>3$ implies that $f$ is concave up on $(3, \infty)$.
(e) Suppose $f(1)=3$. Find $f(2)$.

$$
\begin{aligned}
& f(x)=x^{3} / 3-3 x^{2}+5 x+c \text { for some constant } c . \text { Solve } f(1)=3 \text { for } c \text { to } \\
& \text { get } c=2 / 3 \text {. Then } f(2)=4 / 3 .
\end{aligned}
$$

3. Compute each of the following derivatives.
(a) $\frac { d } { d x } \sqrt { x ^ { 3 } + 1 } \longdiv { \frac { 3 x ^ { 2 } } { 2 \sqrt { x ^ { 3 } + 1 } } }$
(b) $\frac{d}{d x} \ln \left(x^{3}+1\right) \frac{3 x^{2}}{x^{3}+1}$
(c) Let $f(x)=\frac{d}{d x} e^{x^{2}+1} \cdot e^{2 x}$. Find $f^{\prime}(x) \cdot f^{\prime}(x)=2(x+1) e^{(x+1)^{2}}$
(d) $\frac{e^{x}}{x} \frac{x-1}{x^{2}} e^{x}$
4. Compute the following antiderivatives.
(a) $\int 6 x^{3}-5 x-1 d x 3 / 2 \cdot x^{4}-5 / 2 \cdot x^{2}-x+c$
(b) $\int 6 x^{\frac{3}{2}}+x^{-\frac{1}{2}} d x 6 \cdot 2 / 5 \cdot x^{5 / 2}+2 x^{1 / 2}+c$
(c) $\int \frac{3 x^{3}+2 x-1}{x} d x \int 3 x+2-1 / x d x=3 x^{2} / 2+2 x-\ln |x|+c$
(d) $\int \frac{2 x+1}{x^{2}+x-3} d x \ln \left|x^{2}+x-3\right|+c$
5. Compute the following definite integrals.
(a) $\left.\int_{0}^{2} 2 x e^{-x^{2}} d x-e^{-x^{2}}\right]_{0}^{2}=1-e^{-4} \approx 0.9816$
(b) $\left.\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x 2 / 3\left(x^{2}-x+5\right)^{3 / 2}\right]_{0}^{5}=\frac{10}{3}(25-\sqrt{5}) \approx 75.8798$
6. Find the largest interval over which $f(x)=4 x^{3}+39 x^{2}-42 x$ is decreasing. $f^{\prime}(x)=12 x^{2}+78 x-42$, so the critical points are $x=-7$ and $x=1 / 2$. Use the test interval method to find that $f^{\prime}(x)<0$ on the interval $(-7,1 / 2)$, so $f$ is decreasing over that interval.
7. Find a function $G(x)$ whose derivative is $3 x^{2}-7$ and for which $G(4)=9$.
8. Find the area of the region bounded by $y=x^{3 / 2}$, the $x$-axis, and the lines $x=0$ and $x=4$.
9. Find the area of the region caught between the graphs of the functions

$$
f(x)=-x^{2}+4 x \text { and } g(x)=-2 x+5
$$

10. An apartment complex has 100 two-bedroom units for rent all at the same price. The monthly profit from renting $x$ units is given by

$$
P(x)=-10 x^{2}+1760 x-50000
$$

dollars. Find the number of units that should be rented out to maximize the profit. What is the maximum monthly profit realizable?

