\qquad

1. Suppose the functions f and g are differentiable and their values at certain points are given in the table. The next four problems refer to these functions f and g. Notice that, for example, the entry 1 in the first row and third column means that $f^{\prime}(0)=1$. Note also that, for example, if $K(x)=f(x)-g(x)$, then $K^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)$ and $K^{\prime}(4)=f^{\prime}(4)-g^{\prime}(4)=5-10=-5$. Answer each of the questions below about functions that can be build using f and g.

x	$f(x)$	$f^{\prime}(x)$
0	2	1
1	2	3
2	5	4
3	1	2
4	3	5
5	6	4
6	0	5
7	4	1

x	$g(x)$	$g^{\prime}(x)$
0	5	5
1	7	3
2	4	6
3	2	6
4	6	10
5	3	3
6	1	2
7	0	1

(a) The function h is defined by $h(x)=f(g(x))$. Use the chain rule to find $h^{\prime}(3)$.
(b) The function k is defined by $k(x)=f(x) \cdot g(x)$. Use the product rule to find $k^{\prime}(1)$.
(c) The function H is defined by $H(x)=f(f(x))$. Use the chain rule to find $H^{\prime}(2)$.
(d) Let $Q(x)=f(f(x)-g(x))$. Find $Q^{\prime}(5)$.
(e) Find the derivative of the function f / g at the point $x=4$.
2. Suppose that the derivative of the function f is given by

$$
f^{\prime}(x)=x^{2}-6 x+5
$$

Note: you are given the derivative function! Answer the following questions about f.
(a) Find an interval over which f is increasing.
(b) Find the location of a relative maximum of f.
(c) Find the location of a relative minimum of f.
(d) Find an interval over which f is concave upwards.
(e) Suppose $f(1)=3$. Find $f(2)$.
3. Compute each of the following derivatives.
(a) $\frac{d}{d x} \sqrt{x^{3}+1}$
(b) $\frac{d}{d x} \ln \left(x^{3}+1\right)$
(c) Let $f(x)=e^{x^{2}+1} \cdot e^{2 x}$. Find $f^{\prime}(x)$.
(d) $\frac{d}{d x} \frac{e^{x}}{x}$
4. Compute the following antiderivatives.
(a) $\int 6 x^{3}-5 x-1 d x$
(b) $\int 6 x^{\frac{3}{2}}+x^{-\frac{1}{2}} d x$
(c) $\int \frac{3 x^{3}+2 x-1}{x} d x$
(d) $\int \frac{2 x+1}{x^{2}+x-3} d x$
5. Compute the following integrals.
(a) $\int_{0}^{2} 2 x e^{-x^{2}} d x$
(b) $\int_{0}^{5}(2 x-1) \sqrt{x^{2}-x+5} d x$
6. Find the largest interval over which $f(x)=4 x^{3}+39 x^{2}-42 x$ is decreasing.
7. Find a function $G(x)$ whose derivative is $3 x^{2}-7$ and whose value at $x=4$ is 9.
8. Find the area of the region bounded by $y=x^{3 / 2}$, the x-axis, and the lines $x=0$ and $x=4$.
9. Find the area of the region caught between the graphs of the functions

$$
f(x)=-x^{2}+4 x \text { and } g(x)=-2 x+5
$$

10. An apartment complex has 100 two-bedroom units for rent all at the same price. The monthly profit from renting x units is given by

$$
P(x)=-10 x^{2}+1760 x-50000
$$

dollars. Find the number of units that should be rented out to maximize the profit. What is the maximum monthly profit realizable?

