Name
We define three functions, f, g and h as follows: $f(x)=x^{2}-x, g(x)=x+$ $\frac{1}{x}$, and $h(x)=\sqrt{x+2}$. Notice that the derivatives of these functions are pretty straightforward: $f^{\prime}(x)=2 x-1 ; g^{\prime}(x)=1-x^{-2} ;$ and $h^{\prime}(x)=\frac{1}{2}(x+2)^{-\frac{1}{2}}$. Now the three functions f, g, h can be composed in six different ways. One of these is $F(x)=f \circ g \circ h(x)$. Let G, H, J, K, and L be the names of these functions. Find symbolic representations of each of these functions and their derivatives.

For example, $F(x)=(\sqrt{x+2}+1 / \sqrt{x+2})^{2}-(\sqrt{x+2}+1 / \sqrt{x+2})$ and

$$
F^{\prime}(x)=2(\sqrt{x+2}+1 / \sqrt{x+2})\left(\frac{1}{2}(x+2)^{-1 / 2}-\frac{1}{2}(x+2)^{-3 / 2}\right)-\left(\frac{1}{2}(x+2)^{-1 / 2}-\frac{1}{2}(x+2)^{-3 / 2}\right) .
$$

Alternatively, you can write

$$
\frac{d}{d x} f \circ g \circ h(x)=f^{\prime}(g \circ h) \cdot \frac{d}{d x} g \circ h(x)=f^{\prime}(g \circ h) \cdot g^{\prime}(h(x)) \cdot h^{\prime}(x),
$$

and then fill in each function based on the calculations above.

