One of the powerful ideas of calculus is the limit concept. The limit concept enables us to discuss the zero over zero problems, which we write as $0 / 0$. Let's first talk about real number division. We can say that $6 / 3=2$ because $2 \cdot 3=6$. Likewise we can say that $0 / 3=0$ because $0 \cdot 3=0$. Also, $3 / 0$ is undefined because, of course there is no real number d such that $d \cdot 0=3$.

To see how the $0 / 0$ problem comes up, begin with two functions f and g which satisfy $f(a)=g(a)=0$, where a is a point in both their domains. Now we can ask 'what is the behavior of the function $q(x)=\frac{f(x)}{g(x)}$ for x 's near a ?' Another way to put it is, what is

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

The $0 / 0$ problem is just one of several problems that are called indeterminant forms. Other examples of indeterminant forms are $\infty / \infty, \infty-\infty$, and 1^{∞}. We'll discuss ∞ / ∞ briefly here as well as $0 / 0$.

To understand why we want to explore the $0 / 0$ problem especially, consider the definition of differentiation. Given a function f and a point a in its domain,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided the limit exists. Notice that if f is continuous (don't be concerned about this term, we'll get to it soon), then $\lim _{h \rightarrow 0} f(a+h)-f(a)=0$. Of course, $\lim _{h \rightarrow 0} h=$ 0 as well, so here we have the $0 / 0$ problem.

To handle problems of this type we learn several techniques: factoring, fractional arithmetic, rationalization, and expansion. We'll see examples of each of these. In each case, the method simply allows us to rewrite the quotient $f(x) / g(x)$ in such a way that the $0 / 0$ problem disappears.

1 Factoring

A very simple example is $f(x)=2 x$ and $g(x)=x$. Then $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{2 x}{x}=$ $\lim _{x \rightarrow 0} 2=2$. The important idea here is that $\lim _{x \rightarrow 0} q(x)$ does not depend on $q(0)$ in any way but only on the values of $q(x)$ for x near 0 . Here is a much more interesting example. Find $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+3 x-5}{x^{2}-1}$. Of course we see quickly that we do indeed have a $0 / 0$ problem. The fact that our numerator $f(x)=x^{3}+x^{2}+3 x-5$ has the value 0 when $x=1$ is important information that enables us to factor it. There is a theorem in algebra (called the Factor Theorem) which tells us if a polynomial like our f has a zero at $x=1$, then $x-1$ is a factor of it. In other words, we can write $f(x)=(x-1) q(x)$ where, in this case, $q(x)$ is a quadratic. Divide $x^{3}+x^{2}+3 x-5$ by $x-1$ to get $x^{2}+2 x+5$, then take the limit of the quotient obtained by eliminating
the common factor $x-1$. Thus, we have $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}+3 x-5}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{\left(x^{2}+2 x+5\right)(x-1)}{(x+1)(x-1)}=$ $\lim _{x \rightarrow 1} \frac{x^{2}+2 x+5}{x+1}=8 / 2=4$.

2 Fractional Arithmetic

As an example consider the problem of finding $\lim _{x \rightarrow 3} \frac{x-3}{\frac{1}{x}-\frac{1}{3}}$ The limit of both the numerator and the denominator is 0 , so we must do the fractional arithmetic. The limit becomes

$$
\lim _{x \rightarrow 3} \frac{x-3}{\frac{3-x}{3 x}}=\lim _{x \rightarrow 3} \frac{x-3}{-\frac{x-3}{3 x}}=\lim _{x \rightarrow 3} \frac{1}{-\frac{1}{3 x}}=\lim _{x \rightarrow 3}-\frac{3 x}{1}=-9 .
$$

Note here, as in the other cases we've seen, we can always create a new problem by flipping the fraction over. If

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L \neq 0
$$

then

$$
\lim _{x \rightarrow a} \frac{g(x)}{f(x)}=\frac{1}{L}
$$

3 Rationalizing

Consider the problem of finding $\lim _{x \rightarrow 5} \frac{\sqrt{3 x+1}-4}{x-5}$ Again we have the $0 / 0$ problem, and this time we can see that neither factoring nor doing fractional arithmetic can help to resolve the problem. But we can rationalize the numerator to get

$$
\lim _{x \rightarrow 5} \frac{(\sqrt{3 x+1}-4)(\sqrt{3 x+1}+4)}{(x-5)(\sqrt{3 x+1}+4)}=\lim _{x \rightarrow 5} \frac{3(x-5)}{(x-5)(\sqrt{3 x+1}+4)}=\frac{3}{4+4}=\frac{3}{8}
$$

Of course, had we started with $\lim _{x \rightarrow 5} \frac{x-5}{\sqrt{3 x+1}-4}$, we would have rationalized the denominator.

4 Expanding

Next consider the problem

$$
\lim _{x \rightarrow 0} \frac{(x+1)^{3}-1}{x}
$$

The Zero Over Zero Problem

Some readers will see this as a factoring problem, but most will solve this by expressing $(x+1)^{3}$ as a polynomial in standard form to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{(x+1)^{3}-1}{x} & =\lim _{x \rightarrow 0} \frac{x^{3}+3 x^{2}+3 x+1-1}{x} \\
& =\lim _{x \rightarrow 0} \frac{x\left(x^{2}+3 x+3\right)}{x} \\
& =\lim _{x \rightarrow 0} x^{2}+3 x+3=3
\end{aligned}
$$

So now our repertoire includes all four of the methods. Yet there is another method we need to discuss, one which we use to handle the form ∞ / ∞.

$5 \infty / \infty$

Consider the problem of finding $\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3\right)^{2}}{(x-1)^{4}}$. You can see that both the numerator and the denominator are unbounded. The degree of both the numerator and the denominator is 4 , so it makes sense to expand both. We get the equivalent problem

$$
\lim _{x \rightarrow \infty} \frac{4 x^{4}-12 x^{2}+9}{x^{4}-4 x^{3}+6 x^{2}-4 x+1}
$$

The method for handling this problem is division. At this point in the course, we know how to deal with limit problems like $\lim _{x \rightarrow \infty} \frac{1}{x}$ and $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}$. We have reasoned that if the numerator is fixed and the denominator grows without bound, the fraction must have limit zero. Thus, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\left(2 x^{2}-3\right)^{2}}{(x-1)^{4}} & =\lim _{x \rightarrow \infty} \frac{4 x^{4}-12 x^{2}+9}{x^{4}-4 x^{3}+6 x^{2}-4 x+1} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4 x^{4}-12 x^{2}+9}{x^{4}}}{\frac{x^{4}-4 x^{3}+6 x^{2}-4 x+1}{x^{4}}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{4 x^{4}}{x^{4}}-\frac{12 x^{2}}{x^{4}}+\frac{9}{x^{4}}}{\frac{x^{4}}{x^{4}}-\frac{4 x^{3}}{x^{4}}+\frac{6 x^{2}}{x^{4}}-\frac{4 x}{x^{4}}+\frac{1}{x^{4}}} \\
& =\frac{\lim _{x \rightarrow \infty} \frac{4 x^{4}}{x^{4}}-\lim _{x \rightarrow \infty} \frac{12 x^{2}}{x^{4}}+\lim _{x \rightarrow \infty} \frac{9}{x^{4}}}{\lim _{x \rightarrow \infty} \frac{x^{4}}{x^{4}}-\lim _{x \rightarrow \infty} \frac{4 x^{3}}{x^{4}}+\lim _{x \rightarrow \infty} \frac{6 x^{2}}{x^{4}}-\lim _{x \rightarrow \infty} \frac{4 x}{x^{4}}+\lim _{x \rightarrow \infty} \frac{1}{x^{4}}} \\
& =\frac{4-0+0}{1-0+0-0+0}=4
\end{aligned}
$$

