- 1. Choose a four-digit base 6 number <u>*abcd*</u>₆. Of course the digits a, b, c and d are all in the range $0, 1, 2, \ldots, 5$, and $a \neq 0$. That's right you make up your own problem.
 - (a) Interpret $abcd_6$ to get its decimal equivalent.
 - (b) Next use repeated subtraction to find the base 6 representation of the decimal you obtained in part (a).
- 2. Perform each of the arithmetic operations indicated. Use the base 6 addition and multiplication tables developed in class.
 - (a) $2354_6 + 5434_6$
 - (b) $12354_6 5434_6$
 - (c) $2354_6 \times 34_6$
 - (d) $12354_6 \div 24_6$
- 3. Find the value of each of the expressions
 - (a) 1010101_2
 - (b) 1101101_3
 - (c) 11.011_4
 - (d) 1201_5
 - (e) 2301_7
- 4. Find the binary (=base 2) representation of
 - (a) 2006 using the subtraction method.
 - (b) Find the binary representation of 2003.
- 5. Perform the indicated arithmetic
 - (a) $1101_2 + 10111_2$
 - (b) $1101_2 \times 10111_2$
 - (c) $1011100_2 100101_2$
- 6. Write the numbers from 1 to 100 in both binary and ternary (base 3).