1. Choose a four-digit base 6 number $a_{b c d_{6}}$. Of course the digits a, b, c and d are all in the range $0,1,2, \ldots, 5$, and $a \neq 0$. That's right you make up your own problem.
(a) Interpret $a b c d_{6}$ to get its decimal equivalent.
(b) Next use repeated subtraction to find the base 6 representation of the decimal you obtained in part (a).
2. Perform each of the arithmetic operations indicated. Use the base 6 addition and multiplication tables developed in class.
(a) $2354_{6}+5434_{6}$
(b) $12354_{6}-5434_{6}$
(c) $2354_{6} \times 34_{6}$
(d) $12354_{6} \div 24_{6}$
3. Find the value of each of the expressions
(a) 1010101_{2}
(b) 1101101_{3}
(c) 11.011_{4}
(d) 1201_{5}
(e) 2301_{7}
4. Find the binary (=base 2) representation of
(a) 2006 using the subtraction method.
(b) Find the binary representation of 2003.
5. Perform the indicated arithmetic
(a) $1101_{2}+10111_{2}$
(b) $1101_{2} \times 10111_{2}$
(c) $1011100_{2}-100101_{2}$
6. Write the numbers from 1 to 100 in both binary and ternary (base 3).
