
1.
2. $10 \times 3.14=31.4,1000 \times 0.123123 \ldots=123.123 \ldots, 10 \times 0.49999 \ldots=4.9999 \ldots$, $\frac{98.6}{100}=\frac{986}{1000}$ and $\frac{0.333 \ldots}{10}=0.0333 \ldots$.
3. $\frac{1}{9}=0.111 \ldots=0 . \overline{1}$.
4. Let $M=0.4999 \ldots$ Then $10 M=4.999 \ldots$ and $9 M=10 M-M=4.999 \ldots$ $0.499 \ldots=4.5$, so $M=\frac{4.5}{9}=\frac{1}{2}=0.5$.
5. Being irrational means the number cannot be expressed as the quotient of two integers.
10. One example is $5.701001000100001 \ldots$ where the block of 0 s gets longer by 1 each time.
22. Let $x=5.63121212 \ldots$. Then $100 x=563.121212 \ldots$ and $99 x=100 x-x=$ $563.1212 \ldots-5.631212 \ldots=557.49$. Therefore $x=\frac{557.49}{99}=\frac{55749}{9900}=\frac{18583}{3300}$, when reduced to lowest terms.
23. Let $x=0.010101 \ldots$. Then $100 x=1.01010101 \ldots$ and $99 x=1$. Therefore $x=\frac{1}{99}$.
24. Let $x=71.23999 \ldots$. Then $10 x=712.3999 \ldots$ and $9 x=641.16$. Therefore $x=$ $\frac{641.16}{9}=\frac{64116}{900}=\frac{7124}{100}=71.24$.
37. Let $x<y$ be two real numbers. Let $d=y-x$. Of course, $d>0$. If d is irrational, let d^{\prime} be a rational number less than d obtained by truncating the digits after the second nonzero digit of d. For example, if $d=0.000123 \ldots$... then $d^{\prime}=0.00012$. Now if x is rational, then $x+d$ is irrational and between x and y and $x+d^{\prime}$ is rational and between x and y. On the other hand suppose x is irrational. Then $x+d^{\prime}$ is an irrational between x and y. We can find a rational number between x and y by taking the decimal representation of $x+d^{\prime}$, and going out past the position of the third nonzero digit of d^{\prime}, at which point we truncate (make all the digits zero), the number $x+d^{\prime}$.

