1. Find the prime factorization of each of the following numbers:
(a) 1001
(b) $6!+1$. Recall that the notation n ! means multiply together all the positive integers up to and including n. Thus, for example $4!=1 \cdot 2 \cdot 3 \cdot 4=24$.
(c) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11+1$
2. Let p stand for a prime that is larger than 3 -that is, $p>3$. Can $p+1$ ever be prime? Why or why not?
3. Are there infinitely many nonprimes? Explain.
4. Let $M=(1 \cdot 2 \cdot 3 \cdots \cdot 1000)+1$
(a) Is M necessarily prime?
(b) What can you say about the prime factors of M? Why?
(c) Let $S=(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdots \cdots 991 \cdot 997)+1$-that is, S is one more than the product of all the primes less than 1000 . Is S necessarily prime?
(d) What can you say about the prime factors of S ? Why?
5. Prove that there are infinitely many primes.
6. Recall from class that for any three digit number $\overline{a b c}$, the result of multiplying by first 7 then 11 , then 13 is $\overline{a b c, a b c}$. Compute the product $7 \cdot 11 \cdot 13$. Use your answer to explain the strange result above.
