- 1. Find the prime factorization of each of the following numbers:
 - (a) 1001
 - (b) 6!+1. Recall that the notation n! means multiply together all the positive integers up to and including n. Thus, for example $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$.
 - (c) $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 + 1$
- 2. Let p stand for a prime that is larger than 3-that is, p > 3. Can p + 1 ever be prime? Why or why not?
- 3. Are there infinitely many nonprimes? Explain.
- 4. Let $M = (1 \cdot 2 \cdot 3 \cdot \dots \cdot 1000) + 1$
 - (a) Is M necessarily prime?
 - (b) What can you say about the prime factors of M? Why?
 - (c) Let $S = (2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdots 991 \cdot 997) + 1$ -that is, S is one more than the product of all the primes less than 1000. Is S necessarily prime?
 - (d) What can you say about the prime factors of S? Why?
- 5. Prove that there are infinitely many primes.
- 6. Recall from class that for any three digit number \overline{abc} , the result of multiplying by first 7 then 11, then 13 is $\overline{abc}, \overline{abc}$. Compute the product $7 \cdot 11 \cdot 13$. Use your answer to explain the strange result above.