1. Make up a five-digit number N that has all different digits.
(a) Find the base 8 representation of N.
(b) Interpret your answer to get the number that you started with.
2. Find a pair of positive irrational numbers whose sum is 0.1 .
3. Repeating Decimals. For each repeating decimal, use the 'kill the tail' algorithm discussed in class to find a pair of integers m, n such that m / n is the given number.
(a) $2.3454545 \ldots=2.3 \overline{45}$
(b) $7.11 \overline{311}$
(c) $3.14 \overline{9}$
4. Find the remainder when the Fibonacci Number F_{2006} is divided by 9 .
5. Use the Euclidean algorithm to solve the decanting problem for decanters of sizes 315 and 319. In other words, find integers x and y such that $\operatorname{gcd}(315,319)=$ $315 x+319 y$. Then explain how this solves the decanting problem. Repeat this process for each of the pairs B. 222, 227 and C. 213, 231.
6. Find three decimal digits a, b and c such that the sum of the two three-digit numbers $\underline{a b c}$ and $\underline{c a b}$ is 864 .
