1. Recall that $F_{n}$ represents the $n^{\text {th }}$ Fibonacci number. For convenience, define $F_{0}$ to be 0 .
(a) Write the first eight numbers in the sequence where the $n^{\text {th }}$ term in the sequence is given by $F_{n}+F_{n+2}$.
(b) By examining the sequence of numbers in part a, give a method for finding the next number in the sequence (other than the relation described above.
2. Work problems $3,4,5,10,15-17$ on pages 57 to 61 .
3. Is there an odd/even pattern among Fibonacci numbers? Is it fair to say that one third of the Fibonacci numbers are even, even though there are infinitely many of them?
4. Notice that $F_{5}=5$ and $F_{10}=55$. What are $F_{15}$ and $F_{20}$ ? Does this suggest a conjecture about divisibility of the numbers $F_{5 n}$ ? Recall that the integer $d$ is a divisor of integer $m$ if $m$ is an integer multiple of $d$, that is if $m / d$ is an integer. Develop and prove the conjecture.
5. Suppose a sequence $a_{n}$ is defined in the same way as the Fibonacci sequence except that the first two terms are not 1's. Suppose $a_{7}=16$ and $a_{9}=42$. What is $a_{10}$ ?
