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Sign Charts and the Test Interval Technique

The purpose of this paper is to elaborate the technique discussed in Math 1100 and
Math 1120 for finding the sign chart of a rational function. A rational function r(x)
is a quotient of two polynomial functions, p(x) and q(x). Of course, if q(x) is the
constant function with value 1, then r(x) = p(x)÷1 = p(x) is a polynomial itself, so
all that is said here about rational functions applies to polynomial functions. The
sign chart for such a rational function is a depiction of the number line separated
into intervals by branch points. Plus and minus signs are distributed across the
number line depending on the sign of the function at points of the interval.

1. Consider the function p(x) = (x + 4)(x + 2)2(x − 2)(x − 4)2. Note that p(x)
is already in factored form. The zeros of a polynomial in factored form can
be read off without trouble. We have x = −4,−2, 2 and 4. The multiplicities
of −2 and 4 are two. Thus we have four branch points as shown on the chart
below.

•
−4

•
−2

•
2

•
4

Note that the four branch points divide the number line into five test inter-
vals, (−∞,−4), (−4,−2), (−2, 2), (2, 4), (4,∞). Select a test point from each
interval. Let’s take −5,−3, 0, 3, and 5.

To determine the sign of the function at each test point, build a matrix with
test points listed down the side and factors listed along the top. In the current
case

test point (x + 4) (x + 2)2 (x− 2) (x− 4)2 p(x)
−5 − + − + +
−3 + + − + −
0 + + − + −
3 + + + + +
5 + + + + +

•
−4

•
−2

•
2

•
4

+ + + + − − − − − − − − − − − − − − − + + + ++ + +

The power of the technique shows up here. It does not matter which point
in the interval is selected as the test point. The sign of the function does not
change over a test interval. You can see from the sign chart that p(x) changes
sign at −4 from positive to negative and at 2 from negative to positive. If
the problem we are given is to solve the inequality p(x) ≥ 0, we could do this
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easily at this stage. The solution to p(x) > 0 is just (−∞,−4)∪(2, 4)∪(4,∞).
There are four zeros of p to add to this set, so we get (−∞,−4]∪{−2}∪[2,∞).

2. Consider the rational function

f(x) =
(x2 − 4)(2x + 1)

(3x2 − 3)(x− 2)
.

Notice first that f is not in factored form. Factoring reveals that the numerator
and denominator have common factors. Thus

f(x) =
(x− 2)(x + 2)(2x + 1)

3(x− 1)(x + 1)(x− 2)
.

We can cancel the common factors with the understanding that we are (very

slightly) enlarging the domain of f : f(x) = (x+2)(2x+1)
3(x−1)(x+1)

. Next find the branch
points. These are the points at which f can change signs. Precisely, they are
the zeros of the numerator and of the denominator. They are −2,−1/2, 1,−1.
Again we select test points and find the sign of f at of these points to get the
sign chart.

•
−2

•
−1

•
−1/2

•
1

+ + + + + + − − + − − − − + + + + + + + + ++ + +

Again suppose that we are solving f(x) ≥ 0 The solution to f(x) > 0 is
easy. It is the union of the open intervals with the + signs, (−∞,−2) ∪
(−1,−1/2) ∪ (1,∞). It remains to solve f(x) = 0 and attach these solutions
to what we have. The zeros of f are −2 and −1/2. So the solution to f(x) ≥ 0
is (−∞,−2] ∪ (−1,−1/2] ∪ (1,∞). Notice that the branch points 1 and −1
are not included since f is not defined at these two points. It has vertical
asymptotes at these two places. Technically the value x = 2 should not be
included in the solution because the function f as originally defined is not
defined at x = 2. We make this exception repeatedly, however.

3. Find the intervals over which the function f(x) = (2x−3)2(x+1)3 is increasing.
To answer the question, we use Big Theorem A which tells us how to use f ′

to find the intervals where f is increasing. Specifically, if f ′(x) > 0 over (a, b),
then f(x) is increasing over (a, b). Thus we need the sign chart for f ′(x). Use
the product rule to find that f ′(x) = 2(2x−3) ·2 · (x+1)3 +3(x+1)2(2x−3)2

and factor this to get (2x − 3)(x + 1)2[4(x + 1) + 3(2x − 3)] = (2x − 3)(x +
1)2(10x − 5). The zeros of f ′ are 3/2,−1, and 1/2 and the sign chart is:
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•
−1

•
1/2

•
3/2

+ + + + + + + + + + + + − − + + + + + + + ++ + +

Thus, we can say that f is increasing on (−∞,−1), (−1, 1/2), and (3/2,∞).
But f is continuous at x = −1 so we can amalgamate the first two intervals
to get (−∞, 1/2).

4. Let g(x) = x3 − 6x2 − 15x + 32. Find the intervals over which g is concave
upward. The sign chart for g′′(x) = 6x− 12 is given below.

•
2

− − − − − − − − − − − − − − − − + + + + + ++ + +

Therefore, by Big Theorem B, g is concave upwards on the interval (2,∞).
The point of inflection is the point on the graph of g where this change takes
place. Thus the inflection point is (2, g(2)) = (2,−14).

The next part of this paper is an effort to sort out the types of problems we can
solve using sign charts. Suppose we start with a function f . There are three
types of behavior we are interested in. There are changing signs, changing
direction, and changing concavity. Thus we would like to find

(a) where f changes signs,

(b) where f changes directions, and

(c) where f changes concavity.

In the final example, we will see another problem we can solve using the test
interval technique. To answer (1), we need to find the zeros and the vertical
asymptotes of f . We do this by constructing the sign chart of f as we did
in problems 1 and 2 above. To answer (2), we need to find the relative max
and min, and we can do this by constructing the sign chart for f ′ as we did
in problem 3 above. Remember that when f ′ changes signs, f has either a
local max or min. Thus we find the critical points (stationary and singular).
Using these as branch points, construct the sign chart for f ′. To answer (3),
we need to find the inflection points, ie, the points of the graph of f where f ’s
concavity changes. We do this by constructing the sign chart for f ′′. When f ′′

changes from positive to negative, the concavity of f changes from upwards
to downwards. And when f ′′ changes from negative to positive, the concavity
of f changes from downwards to upwards.
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5. For a final example, recall that
√

x is a well-defined real number if and only if
x ≥ 0. Use this fact to find the domain of the function g(x) defined by

g(x) =
√

(x− 5)(x− 3)(x)(x + 1)2(x + 4).

Let u(x) = (x− 5)(x− 3)(x)(x+1)2(x+4). So we need to solve the inequality
u(x) ≥ 0. To this end, note that the roots of u(x) = 0 are x = 5, x =
3, x = 0, x = −1, and x = −4. These branch points split the line into six
intervals, (∞,−4), (−4,−1), (−1, 0), (0, 3), (3, 5), and (5,∞). Using test points
−5,−2,−1/2, 1, 4, and 6, we find that u(−5) > 0, u(−2) < 0, u(−1/2) <
0, u(1) > 0, u(4) < 0, u(6) > 0. Notice that although x = −1 is the endpoint
of two abutting intervals over which g is negative, g(−1) = 0. Hence we can
write the domain of g as (∞,−4] ∪ [0, 3] ∪ [5,∞) ∪ {−1}.
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