1. Consider the game G_{1} which starts with one pile of 10 counters. The rules allow a player to take 1,3 , or 5 counters on each turn. The player who makes the last move wins. Denote this game by $N(10 ; 1,3,5)$. Construct the directed graph version of this game. It has 11 vertices labeled 0 through 10 , and a directed edge from a vertex u to a vertex v if and only if $u-1=v, u-3=v$, or $u-5=v$. Show that you can partition the 11 vertices into two groups \mathcal{S} and \mathcal{U} so that each edge from a member of \mathcal{S} goes to one in \mathcal{U}, and some edge from each member of \mathcal{U} goes to one in \mathcal{S}, and the vertex labeled 0 belongs to \mathcal{S}.
2. Consider the game G_{2} which starts with one pile of 20 counters. The rules allow a player to take 1,2 , or 5 counters on each turn. Denote this game by $N(20 ; 1,2,5)$. Do the same analysis with this game.
