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The purpose of this talk (paper) is to explore the relationship between combi-
natorial games and integer representations. A combinatorial game is a two person
game satisfying the conditions

1. players alternate removing counters from a finite collection according to some
rules and

2. the last player to remove a counter wins.

Later we’ll modify this definition to include more games. Strictly speaking, there
are two types of games satisfying these conditions, called partisan and impartial
games. We will be concerned here only with impartial games. These are games in
which each move can be made by either player (unlike say, chess, where a player
cannot move any of his opponent’s pieces). An integer representation is a rule which
describes a correspondence between nonnegative integers and strings of symbols.
Binary, decimal, and ternary representations are examples.

Our first example of a combinatorial game is the classic Bouton’s Nim. We
begin with four piles of counters. For this specific version, we designate piles
of sizes 1, 3, 5, and 7 although we are interested ultimately in playing this game
optimally for any number of piles and for piles of any size. The rules permit a
player to remove, at his turn, any number of counters from any one pile. We
denote the initial position by an ordered quadruple (1, 3, 5, 7). The first player
will be called Fred and the second Sally. The play of the game can be depicted
as a sequence of quadruples, where each move corresponds to an arrow. For ex-

ample, (1, 3, 5, 7)
f−→ (1, 3, 5, 6)

s−→ (1, 3, 4, 6)
f−→ (1, 3, 4, 3)

s−→ (1, 3, 1, 3)
f−→

(1, 3, 1, 0)
s−→ (1, 0, 1, 0)

f−→ (1, 0, 0, 0)
s−→ (0, 0, 0, 0). Notice that the game above

was won by Sally. The 4-tuples (n1, n2, n3, n4) are called positions, and the set of all
positions is denoted by P . The special position (0, 0, 0, 0) is denoted O, as will the
terminal position in other games. We’ll come back to Bouton’s Nim after we learn
more about combinatorial games in general and integer representations.

The next step is understanding place value numerical representation. We all
understand that the number 463.05 is just 4×102+6×101+3×100+0×10−1+5×10−2.
In words, four hundreds plus six tens plus three ones plus zero tenths plus five
hundredths. That is, 463.05 is a sum of digital multiples of powers of ten. Now
suppose we allow ourselves only the powers of 2. This results in what is called binary
notation or binary representation. In this case we need only use the two digits 0 and
1 to represent (almost uniquely) each real number. For example 1001.01 means 1
two-cubed plus 0 two-squared plus 0 twos plus 1 one plus 0 halves plus 1 fourth, or
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9.25. Complete the binary representation sheet (handout 1) provided before reading
forward. If you’re feeling ambitious, work the arithmetic problems provided also.

Now we turn back to combinatorial games. The simplest of these are called one
pile nim. We begin with a single pile of counters and a list of allowable moves. The
notation N(10; 1, 2), for example, refers to a game which starts with 10 counters.
Players can remove 1 or 2 counters at each turn. Play this game several times with
a friend, taking turns as the starting player. Who wins? Try to devise a strategy to
win whenever you are the first player.

Next we take another detour, this time to learn about
directed graphs. A directed graph or digraph for short,
is a set of vertices (here, the positions 0, 1, 2, . . . , 10)
together with a set of directed edges (here, the moves).
Here’s an example. Notice that the game can be re-
covered from the graph. In fact, we might as well play
the game on the digraph. Unless we say otherwise, all
edges are assumed to be downwardly directed. If there
is a directed edge from u to v, we say u communicates
to v. Instead of picking up counters from a pile, we
simply move a marker from one numbered position to
a lower numbered position along a directed edge.
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Fig. 1

Notice something very interesting about the digraph. It is that the vertices P
can be split into two subsets S and U with the following properties:

1. 0 ∈ S.

2. From every member of U , there is a move to a member of S.

3. All moves from a position in S result in a member of U .
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In our example game, S ={0, 3, 6, 9} and U ={1, 2, 4, 5, 7, 8, 10}. How can you
win? Simply by moving to a member of S. Then by property 3., your opponent
must move to a position in U . Then by property 2., you can move back to a position
in S, etcetera, and finally, by property 1., you will win because you are the only
player who can move to 0. We call the members of S safe positions because they
are safe to move to, and those of U unsafe. If there is a directed edge from vertex i
to vertex j, we call j a successor of i.

Let’s go back and label each vertex of the digraph with
S or U using the properties above. Here we abuse the
notation, using S and U both for sets and for labelling
members of those sets. First label vertex 0 with S
because of property 1. Next we see that vertex 1 has
all of its successors labeled, so it can be labeled. Since
it communicates only to an S position, we label vertex
1 with U . Now vertex 2 communicates both to a U
position and to an S position, so how should we mark
it? If we mark it S, we violate condition 3., so we
must mark it with a U . Now what about vertex 3?
We can move from 3 only to 1 and 2, both of which
have U labels. If we label 3 with U , we violate property
2. Therefore we must label vertex 3 with a S. From
vertex 2, you’d move to 0 and win rather than to 1
which would let your opponent move to 0 and win.
Since you’d win from vertex 2, it is an unsafe position
to move to. But 3 is a safe position to move to since
your opponent would have to move to 1 or 2 which are
both unsafe. We continue the labeling process all the
way up the graph.
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Fig. 3

The general step is this: Suppose all the successor positions of p have been
labeled. Then

• if all these positions belong to U , then label p with S, and

• if one of these positions is in S, then give p the label U .

Try the labeling process with the digraph provided in Fig. 4.
Let’s try three more games of one pile nim. First, please play with your partner

the game N(20; 1, 3, 5); then play N(20; 1, 2, 5); and finally N(20; 1, 2, 6). For each
of these games, find the partition of P into S and U . Check your work against the
tables below:
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N(20; 1, 3, 5) N(20; 1, 2, 5) N(20; 1, 2, 6)

position label position label position label
20 S 20 U 20 U
19 U 19 U 19 U
18 S 18 S 18 U
17 U 17 U 17 S
16 S 16 U 16 U
15 U 15 S 15 U
14 S 14 U 14 S
13 U 13 U 13 U
12 S 12 S 12 U
11 U 11 U 11 U
10 S 10 U 10 S
9 U 9 S 9 U
8 S 8 U 8 U
7 U 7 U 7 S
6 S 6 S 6 U
5 U 5 U 5 U
4 S 4 U 4 U
3 U 3 S 3 S
2 S 2 U 2 U
1 U 1 U 1 U
0 S 0 S 0 S

Now let’s go back to see how to characterize the S positions of N(100; 1, 2).
You can probably guess that the multiples of 3 play a role here just as they did in
N(10; 1, 2), where S is the set {0, 3, 6, 9}. Yes, the positions of S in N(100; 1, 2)
are the multiples of 3. That is, they are the numbers whose ternary representations
have units digit 0. This more complicated characterization of S positions bridges
the gap between one pile nim on one hand and two more complicated games to be
introduced later, Bouton’s Nim and Whytoff’s game on the other. In these more
complicated games, the divisibility properties are useless. We are now ready to state
our main interest in combinatorial games:

For each game, find the sets S and U , and study their properties.
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This seems to be the right time to fulfill outr
promise to enlarge the collection of games of inter-
est. There are lots of games of interest which have
nothing to do with counters and which this the-
ory enables us to solve. Some of these are Green
Hackenbush, Cram, Kayles and Grundy’s game,
all of which are studied in the exercises which fol-
low. In fact, however, every finite digraph without
cycles is a suitable board for playing a combinato-
rial game. Consider the one shown here. The top
position is the start, and each move is downward
along an edge. As usual, the winner is the last
player to move. The same S − U analysis works
here which worked on the one pile nim games ear-
lier. For convenience, we have labeled the vertices
a through j. Label the terminal positions with S.
In this case there are two, a and j. Then consider
any position all of whose successors have been la-
beled. All successors of b and all successors of
i have been labeled, so they can be labeled. Re-
member that they get label S if all their successors
have U labels and label U if there is a successor
labeled S. Follow these rules to label all the po-
sitions on the digraph of handout 3.
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In fact, however, there is an even more interesting problem which is easier to
solve. Rather than classify positions of a game as safe or unsafe, we can assign a
numerical value to each position.

Grundy Values of Games
It is possible, no matter what combinatorial game we are playing, to assign to

each position a number, called the Grundy-value or G-value of the position, in such
a way that the positions with G-value 0 are precisely those of S, and all those of
U have positive value. To carry this out, we need a function called mex. The m
stands for minimum and the ex stands for excludant. Here’s the definition. If
T is a finite set of nonnegative integers, mex(T ) denotes the smallest nonnegative
integer NOT in T . For example,

mex ({1, 2, 3}) = 0

mex ({0, 1, 4, 7}) = 2

mex ({0, 1, 2, 3}) = 4 and

mex ({5}) = 0.
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Let’s go back to the digraph representing N(10; 1, 2), assign position 0 the G-value
0 and continue to work upwards, assigning to each position the mex of all the
values accessible from that position. In symbols, if p is a position and S(p) = {q :
there is a move from p to q} is the set of all successors of p, the Grundy-value of the
position p, denoted G(p), is given by

G(p) = mex ({G(q) : q ∈ S(p)}).

Notice that G(0) = G(3) = G(6) = G(9) = 0. Compute the G-values of the positions
in the digraph game of Fig. 4.

At this stage we consider the relationship between the S,U classification and the
Grundy-value classification. We can prove that the Grundy-value represents a finer
classification in the following sense: Each position with G-value 0 is an S position
and each positive G-value position belongs to the set U of unsafe positions. It is
a proof by induction. To be rigorous, we introduce some notation. Let Z and P
represent the positions with 0 and positive G-values, respectively. And as before, let
S and U represent the safe and unsafe positions in the same directed graph game G.
Our claim is that S = Z and U = P . First, note that all the terminal positions are
both in S and in Z. Now take a position p all of whose successors have been labeled
in both classifications, and assume that for all these positions, the claim holds. If
p belongs to S, then it does so because there is no move to an S position, which
means that G(p) = mex ({G(q) : q ∈ S(p)} = mex (T ) = 0, because 0 /∈ T ). On
the other hand, if p ∈ U , then there is a move from p to a member of S, that is
to a position with G-value 0. Hence G(p) > 0. This proves that the sets Z and S
coincide and that the sets P and U coincide.

Next, we learn to play the game N(10, 11). This game is played as follows: When
it’s your turn, select a nonempty pile and take any number of counters from it. Play
this game with your partner several times and then try to imagine what the directed
graph version looks like. This game is an example of Bouton’s Nim, which is played
with any number of piles of any sizes in the same way. When it’s your turn, select
a nonempty pile and take any number of counters from it. The winner is, as usual,
the last player to make a move. The directed graph for the game N(10, 11) has
(10 + 1)(11 + 1) = 132 vertices and 1265 (= 11

2
· 10 · 11 + 12

2
· 11 · 10) edges, a rather

large digraph. To simplify the labeling process, we can draw an 11 × 12 grid of
squares. Imagine the grid located in the plane so that the bottom left corner square
has (0, 0) at its center and the upper left corner square has (0, 11) at its center as
shown below.
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(0, 0)

(0, 11) (10, 11)

(10, 0)

We can play the game on the grid itself instead of using two piles of counters.
We start with a marker at the square (10, 11). To make a move, slide the marker
horizontally to the left or downward. A move to the left corresponds to removing
counters from the 10-counter pile, while downward slides correspond to removing
counters from the 11-counter pile. Play the game N(10, 11) with your partner. Try
to anticipate what comes next. First, we’ll label on the grid provided the positions
with the symbols S and U , according to weather they are safe or unsafe to move to.
One winning strategy for the starting player is clear. You can move from (10, 11) to
(10, 10) and continue to restore the symmetry each time your opponent disturbs it
(which he must do on each of his plays). Next, use the other copy of the grid provided
to establish the Grundy value of each position. To play Bouton’s Nim perfectly, we
must understand how to calculate the G-values of these positions quickly. Next
we’ll view the table of G-values as the results of an operation ⊕ on the nonnegative
integers. Turn the table 90 degrees so that the upper left corner is the entry (0, 0).
There is no need to limit ourselves to a 10× 11 grid. Let’s go for 15× 15 for now,
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but with the understanding that the operation is defined on the entire set of natural
numbers {0, 1, 2, 3, . . .}. Then the grid looks like:

⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

There is another way to think of N(10, 11) which will prove useful later. We
can treat it as a pair of single pile games which we agree to play simultaneously.
Any finite collection of games can be put together in this way. Such games are
called composite games. Here’s how composite games are played. Suppose we have
games G1 and G2. Their composite is denoted G1 ⊕ G2. To play G1 ⊕ G2, the
first player chooses one of the two component games and makes a move in it. Then
the other player chooses one of the games and makes a move in it. This continues
until one of the games reaches a terminal position, whereupon both players move
in the nonterminated game until it terminates. As usual, the last player making a
move wins. Notice that the game N(10)⊕N(11) is played in just the same way as
N(10, 11): t each turn a nonempty pile is picked and take some counters are taken
from it. Let’s play the composite game N(12; 1, 2, 5)⊕N(11; 1, 2, 3) to get an idea
of how composite games work. To do this, take a pile of 12 counters and another of
11 counters. You’re allowed to remove 1, 2 or 5 from the former pile and 1, 2 or 3
from the later.

At this stage some astute observers have noticed that we have a symbol ⊕ which
we are using for two purposes, as a binary operation on games and as a binary
operation on nonnegative numbers. We’ll have to be careful not to let that confuse
us. We will usually be able to tell from context which of the two is meant.

Let’s investigate some of the properties of ⊕ on the set Z+ = {0, 1, 2, 3, . . .}. We
can see that (Z+,⊕) has an identity element 0. Its also not hard to see that the
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operation is associative and commutative. Notice that the 0’s down the diagonal tell
us that each element is its own inverse. Hence the pair (Z+,⊕) is what is called
an Abelian group. There’s another important property as well. Each of the subsets
Si = {0, 1, 2, . . . , 2i − 1} is a subgroup of (Z+,⊕). What this means is that each
of these subsets Si is closed under the ⊕ operation. But how do we compute in
(Z+,⊕)? The answer is this:
Suppose we want to compute u ⊕ v. Write u and v in binary and ‘add’ the two
binary numbers using the following digit table:

⊕ 0 1
0 0 1
1 1 0

Let’s translate this into a practical strategy for winning N(1, 3, 5, 7) or any game
of Bouton’s Nim. For any position, we construct the binary configuration. For
convenience, we’ll go with N(1, 3, 5, 7).

1 = 1

3 = 1 1

5 = 1 0 1

7 = 1 1 1

0 0 0 = 0

In other words, apply the addition table to each column individually. If the result
in each column is 0, call the configuration balanced, otherwise unbalanced. It turns
out that the balanced positions are exactly the S positions. To prove this we have
to see

1. that all terminal positions are balanced,

2. that for each unbalanced position p, there is a move to a balanced position q,
and

3. that from any balanced position q, every move results in an unbalanced posi-
tion.

The first item is clear. There is only one terminal position O = (0, 0, 0, . . . 0), one 0
for each pile, and its binary configuration is certainly balanced.

9



Next suppose we have an unbalanced position, say (u1, u2, . . . , uk). This will
be much clearer if we deal with actual values. To be definite, take the position
(5, 10, 15, 20, 25) whose binary configuration is given by

5 = 1 0 1

10 = 1 0 1 0

15 = 1 1 1 1

20 = 1 0 1 0 0

25 = 1 1 0 0 1

0 1 1 0 1

That is, the second, third and fifth columns have an odd number of 1’s and the
other columns have an even number of 1’s. To move from (5, 10, 15, 20, 25) to a
balanced position requires finding a way to balance these three unbalanced columns
without disturbing the balanced nature of the first and fourth columns. To change
the second column to one with an even number of 1’s means that we have to remove
some counters from one of the three piles which contributes a 1 to that column
(why?). That is, we must remove counters from either the 10 pile, the 15 pile or
the 25 pile. If we select the 25 pile, we must remove just enough counters to change
the 0 that pile contributes in the third column to a 1, leave the 0 contribution in
the fourth column, and change the 1 in the fifth column to a 0. We want the pile
to contribute 1 0 1 0 0 which is the binary representation of 20. Thus the
move (5, 10, 15, 20, 25) −→ (5, 10, 15, 20, 20) takes the game from a position in U to
a position in S. Finally, we need to be sure that any move from a balanced position
results in an unbalanced position. This is easy to see. Each move reduces the size of
some pile. The binary representation of that pile changes when the pile is reduced.
In particular, some 1 gets changed to a 0. The column in which that 1 appears
initially is changed to 0 by the move, and this unbalances that column. We’re done.
To win at Bouton’s Nim, just analyze your initial position. If its balanced, you’ll
probably lose. If its unbalanced, find a balanced position to move to, and after that
continue to move to balanced positions.

Now for the really good news. You can win any composite combinatorial game
in the same way. Here’s an example that shows how. Suppose we’re playing the
composite game N(20; 1, 3, 5)⊕N(20; 1, 2, 5)⊕N(20; 1, 2, 6)⊕W (12, 11)⊕N(3, 5, 7, 9)
where W (12, 11) is Whytoff’s game with piles of sizes 12 and 11. Whytoff’s game is
played just like two pile nim except that players can also remove the same number of
counters from both piles at a turn. See the homework problem on Whytoff’s game.
Of course, the game N(3, 5, 7, 9) is itself a composite of the four one pile nim games
N(3), N(5), N(7) and N(9). That is, N(3, 5, 7, 9) = N(3) ⊕ N(5) ⊕ N(7) ⊕ N(9).
This composite game is played as follows: at each turn a player selects one of the
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five component games and make a legal move in that game. For example, denoting
the initial position by (20, 20, 20, (12, 11), 3, 5, 7, 9), the first player could move to
(20, 20, 20, (9, 8), 3, 5, 7, 9), since that corresponds to taking one counter from each
of the two Whytoff piles. We know from earlier about the Grundy values of the
component games, and we are therefore able construct the binary configuration as
follows:

Component Game Grundy value Binary rep. of Grundy value
N(20; 1, 3, 5) 0 0 0 0 0 0
N(20; 1, 2, 5) 2 0 0 0 1 0
N(20; 1, 2, 6) 3 0 0 0 1 1

N(3) 3 0 0 0 1 1
N(5) 5 0 0 1 0 1
N(7) 7 0 0 1 1 1
N(9) 9 0 1 0 0 1

W (9, 8) 15 0 1 1 1 1
Composite ? 0 0 1 1 0

We may conclude that the Grundy value of the composite game is the ⊕ sum
(or sometimes called the nim sum) of the component games, which is in this case
1102 = 6. To restore the balance to the configuration, we need to select a game
which contributes a 1 to the third column. Any of the games N(5), N(7), or W (9, 8)
will work. Can you find the winning move from W (9, 8)?
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