1. Consider the game G_{1} which starts with one pile of 20 counters. The rules allow a player to take 1,3 , or 5 counters on each turn. The player who makes the last move wins. Denote this game by $N(20 ; 1,3,5)$. Do you want to move first? Explain why or why not.
2. Consider the game G_{2} which starts with one pile of 20 counters. The rules allow a player to take 1,2 , or 5 counters on each turn. Denote this game by $N(20 ; 1,2,5)$. Again, the player who makes the last move wins. Do you want to move first? Explain why or why not.
3. Consider the game G_{3} which starts with one pile of 20 counters. The rules allow a player to take 1,2 , or 6 counters on each turn. Denote this game by $N(20 ; 1,2,6)$. As usual, the player who makes the last move wins. Do you want to move first? Explain why or why not.
4. Consider the game G_{4} which starts with one pile of 20 counters. The rules allow a player to take a prime number of counters on each turn. Denote this game by $N(20 ;$ prime $)$. As usual, the player who makes the last move wins. Do you want to move first? Explain why or why not.
5. Consider the game G_{5} which starts with one pile of 200 counters. The rules allow a player to take an integer power of 2 counters on each turn. Denote this game by $N(200 ; 1,2,4,8,16,32,64,128)$. As usual, the player who makes the last move wins. Do you want to move first? Explain why or why not.
6. Consider the game G_{6} which starts with one pile of 2000 counters. The rules allow a player to take an integer power of three counters on each turn. Denote this game by $N\left(2000 ; 3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}\right)$. As usual, the player who makes the last move wins. Do you want to move first? Explain why or why not.
