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1 Introduction

Using the resultant of two polynomials, we show how to calculate a collection of invariant

relations for the derivatives of any polynomial P (x) =
n∑

i=0

aix
i.

As a simple example, for the quadratic Q (x) = a2x
2 + a1x + a0, we have

(Q′ (x))
2 − 2Q′′ (x) · Q (x) = (Q′ (0))

2 − 2Q′′ (0) · Q (0) = a2
1 − 4a0a2.

As the degree n of the polynomial P (x) increases, the complexity of most of these invariant

relations increases very rapidly. For this reason, the majority these invariant relations are

mostly of theoretical interest for large n.

2 The Resultant of two Polynomials

The resultant ρ (P (x) , Q (x)) of two polynomials P, Q is a standard determinant which gives

by its zero or non-zero value the necessary and sufficient condition so that P and Q have

no roots in common. Also, if P (x) = an ·
n∏

i=1

(x − ri) and Q (x) = bm ·
m∏

i=1

(x − si), then

ρ (P (x) , Q (x)) = am
n · bn

m ·
∏

(ri − sj) .

This resultant is the tool that we use in this paper.

Lemma 1 Suppose P (x) =
n∑

i=0

aix
i and Q (x) =

m∑
i=0

bix
i are arbitrary polynomials. Define

P (x) = P (x + b) and Q (x) = Q (x + b) . Then ρ
(
P (x) , Q (x)

)
= ρ (P (x) , Q (x)) .
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Proof. Let r1, r2, · · · , rn be the roots of P (x) and let s1, s2, · · · , sm be the roots of Q (x).

Also, let r1, r2, · · · , rn be the roots of P (x) and let s1, s2, · · · , sm be the roots of Q (x). Now

each ri = ri − b and each sj = sj − b. Also, ρ (P, Q) = am
n · bn

m ·
∏

(ri − sj) . Therefore,

ρ
(
P , Q

)
= am

n · bn
m ·

∏
(ri − sj) = am

n · bn
m ·

∏
(ri − sj) = ρ (P, Q) .

3 Computing Invariant Relations for the Derivatives

of a Polynomial

Let us define the polynomial P (x) =
n∑

i=0

Aix
i where A0, A1, · · · , An are constants. Now

P (x) =
n∑

i=0

Ai (b) (x − b)i =
n∑

i=0

P i (b)

i!
(x − b)i where P i (b) is the ith derivative of P (x)

evaluated at x = b and P 0 (b) = P (b) .

Therefore, P (x + b) =
n∑

i=0

Ai (b) xi =
n∑

i=0

P i (b)

i!
xi. Thus, for all i ∈ {0, 1, 2, · · · , n} , Ai (b) =

P i(b)
i!

. Also, by letting b = 0, we see that for all i ∈ {0, 1, 2, · · · , n} , Ai = Ai (0) = P i(0)
i!

since

P (x) =
n∑

i=0

Aix
i =

n∑
i=0

Ai (0) xi.

Let us call Q (x) = P (x + b) =
n∑

i=0

Ai (b) xi =
n∑

i=0

P i (b)

i!
xi.

From Lemma 1, we see that if P i (x) , P j (x) are the ith, jth derivatives of P (x) and

Qi (x) , Qj (x) are the ith, jth derivatives of Q (x), including P 0 = P, Q0 = Q, then

ρ (P i (x) , P j (x)) = ρ (Qi (x) , Qj (x)). This follows since Qi (x) = (P (x + b))i = P i (x + b)

and Qj(x) = (P (x + b))j = P j (x + b) .

Now ρ (P i (x) , P j (x)) is just an algebraic polynomial expression involving the constants

A0, A1, A2, · · · , An where, of course, each Ai = Ai (0) .

Also, ρ (Qi (x) , Qj (x)) is the exact same polynomial expression except that each Ai, i =

0, 1, 2, · · · , n, has been replaced by Ai (b) = P i(b)
i!

.

Therefore, since ρ (P i (x) , P j (x)) = ρ (Qi (x) , Qj (x)) for each i 6= j, i, j ∈ {0, 1, 2, · · · , n − 1},
we see that for each such i, j we have created a polynomial expression that gives an invariant

relation for the derivatives of the polynomial P (x) =
n∑

i=0

Aix
i. This will become more clear

after the illustrations in Section 4.

Observation 1. Suppose C, C are any non-zero constants. Then ρ (P i (x) , P j (x)) =
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ρ (Qi (x) , Qj (x)) implies that ρ
(
CP i (x) , CP j (x)

)
= ρ

(
CQi (x) , CQj (x)

)
.

It is usually more convenient to use this last equality.

4 Illustrating the Invariant Relations for Quadratic and

Cubic Polynomials

We first define the quadratic P (x) =
2∑

i=0

Aix
i = A2x

2 +Aix+A0. Also, Q (x) = P (x + b) =

2∑
i=0

Ai (b) xi =
2∑

i=0

P i (b)

i!
xi.

Now

A0 (b) = P 0 (b) = P (b) = A2b
2 + A1b + A0.

A1 (b) =
P ′ (b)

1!
= 2A2x + A1.

A2 (b) =
P ′′ (b)

2!
= A2.

Now

ρ (P ′ (x) , P (x)) = ρ
(
2A2x + A1, A2x

2 + A1x + A0

)
=

∣∣∣∣∣∣∣∣
2A2 A1 0

0 2A2 A1

A2 A1 A0

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
0 −A1 −2A0

0 2A2 A1

A2 A1 A0

∣∣∣∣∣∣∣∣
= A2

[
4A0A2 − A2

1

]
.

We can ignore the A2 that is factored out since A2 = A2 (b). Therefore, we have the

invariant relation 4A0 (b) A2 (b) − (A1 (b))2 = 4A0A2 − A2
1 where A0 = A0 (0) , A1 = A1 (0) ,

and A2 = A2 (0). Of course, this implies that

4P (b) P ′′ (b)

2
− (P ′ (b))

2
= 2P (b) P ′′ (b) − (P ′ (b))

2

= 2P (0) P ′′ (0) − (P ′ (0))
2
.

This is the same invariant relation that we gave in the Abstract except that we called

P = Q and called b = x.

Next, we define the cubic polynomial P (x) =
3∑

i=0

Aix
i = A3x

3 + A2x
2 + A1x + A0.
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Also, Q (x) = P (x + b) =
3∑

i=0

Ai (b) xi =
3∑

i=0

P i (b)

i!
xi.

Now

A0 (b) = P 0 (b) = P (b) = A3b
3 + A2b

2 + A1b + A0.

A1 (b) =
P ′ (b)

1!
= 3A3b

2 + 2A2b + A1.

A2 (b) =
P ′′ (b)

2!
= 3A3b + A2.

A3 (b) =
P ′′′ (b)

3!
= A3.

We will study both ρ (P, P ′) and ρ (P, P ′′). Of course, ρ (P ′, P ′′) is already taken care of

since P ′ is a quadratic. Also ρ (P, P ′′′) is a degenerate case since P ′′′ (x) = A3 is a constant.

Now ρ (P, P ′) is just the discriminant of P (x) = A3x
3 +A2x

2 +A1x+A0. We can ignore

the A3 term that factors out of this discriminant since A3 = A3 (b) .

Therefore,

ρ (P (x) , P ′ (x)) = −27A2
0A

2
3 + 18A0A1A2A3 − 4A0A

3
2 − 4A3

1A3 + A2
1A

2
2.

See p.117, [2] for this standard discriminant of a cubic. Therefore, we have relation

−27A0 (b)2 A3 (b)2 + 18A0 (b) A1 (b) A2 (b) A3 (b)

−4A0 (b) A2 (b)3 − 4A1 (b)3 A3 (b) + A1 (b)2 A2 (b)2

= −27A2
0A

2
3 + 18A0A1A2A3 − 4A0A

3
2

−4A3
1A3 + A2

1A
2
2.

Substituting

A0 (b) = P (b) , A1 (b) = P ′ (b) , A2 (b) =
P ′′ (b)

2
, A3 (b) =

P ′′′ (b)

6
,

A0 = A0 (0) = P (0) , A1 = A1 (0) = P ′ (0) ,

A2 = A2 (0) =
P ′′ (0)

2
, A3 = A3 (0) =

P ′′′ (0)

6

gives us one invariant relation involving the derivatives of the cubic P (x) = A3x
3 + A2x

2 +

A1x + A0.
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Now

ρ

(
P ′′ (x)

2
, P (x)

)
= ρ

(
3A3x + A2, A3x

3 + A2x
2 + A1x + A0

)

=

∣∣∣∣∣∣∣∣∣∣∣

3A3 A2 0 0

0 3A3 A2 0

0 0 3A3 A2

A3 A2 A1 A0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

0 −2A2 −3A1 −3A0

0 3A3 A2 0

0 0 3A3 A2

A3 A2 A1 A0

∣∣∣∣∣∣∣∣∣∣∣
= A3

[
2A3

2 − 9A1A2A3 + 27A0A
2
3

]
.

We again ignore A3 since A3 = A3 (b) .

Therefore, we have the relation

2A2 (b)3 − 9A1 (b) A2 (b) A3 (b) + 27A0 (b) A3 (b)2

= 2A3
2 − 9A1A2A3 + 27A0A

2
3.

Again by substituting A0 = P (b) , A1 (b) = P ′ (b) , A2 (b) = P ′′(b)
2

, A3 (b) = P ′′′(b)
6

, A0 =

A0 (0) = P (0) , A1 = A1 (0) = P ′ (0) , A2 = A2 (0) = P ′′(0)
2

, A3 = A3 (0) = P ′′′(0)
6

, we

have a second invariant relation involving the derivatives of the cubic polynomial P (x) =

A3x
3 + A2x

2 + A1x + A0. Of course, as stated previously, ρ (P ′, P ′′) will fall under the

classification of the invariant for quadratic polynomials since P ′ (x) is a quadratic.

5 Discussion

As n gets larger, most of these invariant relations increase very rapidly in complexity. How-

ever, one of these invariants, namely ρ(P, P n−1), can be computed easily. The reader may

enjoy doing this. For example, the reader might like to compute ρ (P, P ′′′) for the fourth

degree polynomial. This complexity makes most of these invariant relations mostly of theo-

retical interest for large n.
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